YOLOX中的SimOTA

1、确定正样本候选区域(调用get_in_boxes_info确定候选区域

将gt里面的点或者在center_radius范围内的点作为候选正样本点

def get_in_boxes_info(
        self,
        gt_bboxes_per_image,
        expanded_strides,
        x_shifts,
        y_shifts,
        total_num_anchors,
        num_gt,
    ):
        expanded_strides_per_image = expanded_strides[0]
        x_shifts_per_image = x_shifts[0] * expanded_strides_per_image
        y_shifts_per_image = y_shifts[0] * expanded_strides_per_image
        x_centers_per_image = (
            (x_shifts_per_image + 0.5 * expanded_strides_per_image)
            .unsqueeze(0)
            .repeat(num_gt, 1)
        )  # [n_anchor] -> [n_gt, n_anchor]
        y_centers_per_image = (
            (y_shifts_per_image + 0.5 * expanded_strides_per_image)
            .unsqueeze(0)
            .repeat(num_gt, 1)
        )

        gt_bboxes_per_image_l = (
            (gt_bboxes_per_image[:, 0] - 0.5 * gt_bboxes_per_image[:, 2])
            .unsqueeze(1)
            .repeat(1, total_num_anchors)
        )
        gt_bboxes_per_image_r = (
            (gt_bboxes_per_image[:, 0] + 0.5 * gt_bboxes_per_image[:, 2])
            .unsqueeze(1)
            .repeat(1, total_num_anchors)
        )
        gt_bboxes_per_image_t = (
            (gt_bboxes_per_image[:, 1] - 0.5 * gt_bboxes_per_image[:, 3])
            .unsqueeze(1)
            .repeat(1, total_num_anchors)
        )
        gt_bboxes_per_image_b = (
            (gt_bboxes_per_image[:, 1] + 0.5 * gt_bboxes_per_image[:, 3])
            .unsqueeze(1)
            .repeat(1, total_num_anchors)
        )

        b_l = x_centers_per_image - gt_bboxes_per_image_l
        b_r = gt_bboxes_per_image_r - x_centers_per_image
        b_t = y_centers_per_image - gt_bboxes_per_image_t
        b_b = gt_bboxes_per_image_b - y_centers_per_image
        bbox_deltas = torch.stack([b_l, b_t, b_r, b_b], 2)

        is_in_boxes = bbox_deltas.min(dim=-1).values > 0.0
        is_in_boxes_all = is_in_boxes.sum(dim=0) > 0
        # in fixed center

        center_radius = 2.5

        gt_bboxes_per_image_l = (gt_bboxes_per_image[:, 0]).unsqueeze(1).repeat(
            1, total_num_anchors
        ) - center_radius * expanded_strides_per_image.unsqueeze(0)
        gt_bboxes_per_image_r = (gt_bboxes_per_image[:, 0]).unsqueeze(1).repeat(
            1, total_num_anchors
        ) + center_radius * expanded_strides_per_image.unsqueeze(0)
        gt_bboxes_per_image_t = (gt_bboxes_per_image[:, 1]).unsqueeze(1).repeat(
            1, total_num_anchors
        ) - center_radius * expanded_strides_per_image.unsqueeze(0)
        gt_bboxes_per_image_b = (gt_bboxes_per_image[:, 1]).unsqueeze(1).repeat(
            1, total_num_anchors
        ) + center_radius * expanded_strides_per_image.unsqueeze(0)

        c_l = x_centers_per_image - gt_bboxes_per_image_l
        c_r = gt_bboxes_per_image_r - x_centers_per_image
        c_t = y_centers_per_image - gt_bboxes_per_image_t
        c_b = gt_bboxes_per_image_b - y_centers_per_image
        center_deltas = torch.stack([c_l, c_t, c_r, c_b], 2)
        is_in_centers = center_deltas.min(dim=-1).values > 0.0
        is_in_centers_all = is_in_centers.sum(dim=0) > 0

        # in boxes and in centers
        is_in_boxes_anchor = is_in_boxes_all | is_in_centers_all

        is_in_boxes_and_center = (
            is_in_boxes[:, is_in_boxes_anchor] & is_in_centers[:, is_in_boxes_anchor]
        )
        return is_in_boxes_anchor, is_in_boxes_and_center

2、计算候选正样本点与gt间的iou

fg_mask, is_in_boxes_and_center = self.get_in_boxes_info(
            gt_bboxes_per_image,
            expanded_strides,
            x_shifts,
            y_shifts,
            total_num_anchors,
            num_gt,
        )

        bboxes_preds_per_image = bboxes_preds_per_image[fg_mask]
        cls_preds_ = cls_preds[batch_idx][fg_mask]
        emb_preds_ = emb_preds[batch_idx][fg_mask]
        obj_preds_ = obj_preds[batch_idx][fg_mask]
        num_in_boxes_anchor = bboxes_preds_per_image.shape[0]

        if mode == "cpu":
            gt_bboxes_per_image = gt_bboxes_per_image.cpu()
            bboxes_preds_per_image = bboxes_preds_per_image.cpu()

        pair_wise_ious = bboxes_iou(gt_bboxes_per_image, bboxes_preds_per_image, False)

3、在候选正样本点间计算cost

gt_cls_per_image = (
            F.one_hot(gt_classes.to(torch.int64), self.num_classes)
            .float()
            .unsqueeze(1)
            .repeat(1, num_in_boxes_anchor, 1)
        )
        pair_wise_ious_loss = -torch.log(pair_wise_ious + 1e-8)

        if mode == "cpu":
            cls_preds_, emb_preds_, obj_preds_ = cls_preds_.cpu(), emb_preds_.cpu(), obj_preds_.cpu()

        cls_preds_ = (
            cls_preds_.float().unsqueeze(0).repeat(num_gt, 1, 1).sigmoid_()
            * obj_preds_.unsqueeze(0).repeat(num_gt, 1, 1).sigmoid_()
        )
        pair_wise_cls_loss = F.binary_cross_entropy(
            cls_preds_.sqrt_(), gt_cls_per_image, reduction="none"
        ).sum(-1)
        del cls_preds_

        cost = (
            pair_wise_cls_loss
            + 3.0 * pair_wise_ious_loss
            + 100000.0 * (~is_in_boxes_and_center)
        )

        (
            num_fg,
            gt_matched_classes,
            pred_ious_this_matching,
            matched_gt_inds,
        ) = self.dynamic_k_matching(cost, pair_wise_ious, gt_classes, num_gt, fg_mask)
        del pair_wise_cls_loss, cost, pair_wise_ious, pair_wise_ious_loss

4、求出预测框与每个gt之间前n_candidate_k个最大iou值并求和取整,作为dynamic_k。从候选正样本点中选取dynamic_k个cost最小的点作为最终的正样本点

def dynamic_k_matching(self, cost, pair_wise_ious, gt_classes, num_gt, fg_mask):
        # Dynamic K
        # ---------------------------------------------------------------
        matching_matrix = torch.zeros_like(cost)

        ious_in_boxes_matrix = pair_wise_ious
        n_candidate_k = min(10, ious_in_boxes_matrix.size(1))
        topk_ious, _ = torch.topk(ious_in_boxes_matrix, n_candidate_k, dim=1)
        dynamic_ks = torch.clamp(topk_ious.sum(1).int(), min=1)
        for gt_idx in range(num_gt):
            _, pos_idx = torch.topk(
                cost[gt_idx], k=dynamic_ks[gt_idx].item(), largest=False
            )
            matching_matrix[gt_idx][pos_idx] = 1.0

        del topk_ious, dynamic_ks, pos_idx

        anchor_matching_gt = matching_matrix.sum(0)
        if (anchor_matching_gt > 1).sum() > 0:
            _, cost_argmin = torch.min(cost[:, anchor_matching_gt > 1], dim=0)
            matching_matrix[:, anchor_matching_gt > 1] *= 0.0
            matching_matrix[cost_argmin, anchor_matching_gt > 1] = 1.0
        fg_mask_inboxes = matching_matrix.sum(0) > 0.0
        num_fg = fg_mask_inboxes.sum().item()

        fg_mask[fg_mask.clone()] = fg_mask_inboxes

        matched_gt_inds = matching_matrix[:, fg_mask_inboxes].argmax(0)
        gt_matched_classes = gt_classes[matched_gt_inds]

        pred_ious_this_matching = (matching_matrix * pair_wise_ious).sum(0)[
            fg_mask_inboxes
        ]
        return num_fg, gt_matched_classes, pred_ious_this_matching, matched_gt_inds

5、使用步骤4求出的正负样本来计算分类、回归损失

你可能感兴趣的:(目标检测,python,目标检测,计算机视觉)