用官方的话来说,FastAPI 是一种现代,快速(高性能)的 Web 框架,基于标准Python 类型提示使用 Python 3.6+ 构建 API
FastAPI 站在巨人的肩膀上?
很大程度上来说,这个巨人就是指 Flask 框架。
FastAPI 从语法上和 Flask 非常的相似,有异曲同工之妙。
技术背景:Py3.6+,Starlette,Pydantic
其实不仅仅是FastAPI,就连 Sanic 也是基于 Flask 快速开发的 Web API 框架。
废话少说,代码总是能给人带来愉悦感 (抱头),直接开怼。
安装
pipinstallfastapi
pipinstalluvicorn
创建一个 main.py 文件
fromfastapiimportFastAPI
app = FastAPI()# 创建 api 对象
@app.get("/") # 根路由
defroot():
return{"武汉":"加油!!!"}
@app.get("/say/{data}")
defsay(data: str,q: int):
return{"data": data,"item": q}
上面搭建了一个最简单的 FastAPI 应用,看起来和 Flask 完全一样,莫名的喜感。
使用以下命令来启动服务器:
uvicorn main:app --reload
FastAPI 推荐使用 uvicorn 来运行服务,Uvicorn 是基于uvloop 和 httptools 构建的闪电般快速的 ASGI 服务器。
uvicorn main:app 指的是:
main:文件main.py
app: 创建的启用对象
--reload: 热启动,方便代码的开发
启动界面如下:
INFO 信息告诉我们已经监听了本地的 8000 端口,访问 http://127.0.0.1:8000得到结果
传入参数
再来看看FastAPI 的异步代码
fromfastapiimportFastAPI
app = FastAPI()# 创建 api 对象
@app.get("/") # 根路由
asyncdefroot():
return{"武汉":"加油!!!"}
@app.get("/say/{data}")
asyncdefsay(data: str,q: int = None):
return{"data": data,"q": q}
开启服务后访问结果是一样的。
在上面的路由方法中,我们传入了一个 q 参数并且初始为 None,如果不给默认值,并且不传参,代码将直接报错。
来看看FastAPI 是如何处理错误的:
可以看到,即使是报错,也是优美的输入一个带有错误字段的 JSON,这就非常的友好了,这也是体现了FastAPI 减少更多的人为错误的特性,返回也更加的简洁直观。
在命令行输出:
再来看看FastAPI 的交互文档
根据官方文档,打开 http://127.0.0.1:8000/docs
看到:
支持动态传入数据:
结果:
从交互体验上也是无比的友好,让代码在生产中更加健壮。
现在我们算是快速的体验了一波FastAPI 骚操作,从代码上和 Flask 及其的类似,体验性更好。
那么再来看看最新的 Python web框架的性能响应排行版
从并发性上来说是完全碾压了Flask (实际上也领先了同为异步框架的tornado 不少),看来FastAPI 也真不是盖的,名副其实的高性能 API 框架呀!
查询参数
先来看看官方小 demo
fromfastapiimportFastAPI
app = FastAPI()
fake_items_db = [{"item_name":"Foo"}, {"item_name":"Bar"}, {"item_name":"Baz"}]
@app.get("/items/")
asyncdefread_item(skip: int =0, limit: int =10):
returnfake_items_db[skip : skip + limit]
该查询是 ? URL中位于关键字之后的一组键值对,以&字符分隔。
在 url 中进行查询
http://127.0.0.1:8000/items/?skip=0&limit=10
skip:查询的起始参数
limit:查询的结束参数
成功返回查询列表。
查询参数类型转换
FastAPI非常聪明,足以辨别 路径参数 和 查询参数。
来看看具体的例子:
fromfastapiimportFastAPI
app = FastAPI()
@app.get("/items/{item_id}")
asyncdefread_item(item_id: str, q: str = None, short: bool = False):
item = {"item_id": item_id}
ifq:
item.update({"q": q})
ifnotshort:
item.update(
{"description":"This is an amazing item that has a long description"}
)
returnitem
看看其访问路径,执行以下的任何一种 url 访问方式
http://127.0.0.1:8000/items/武汉加油?short=1
http://127.0.0.1:8000/items/武汉加油?short=True
http://127.0.0.1:8000/items/武汉加油?short=true
http://127.0.0.1:8000/items/武汉加油?short=on
http://127.0.0.1:8000/items/武汉加油?short=yes
可以发现任何大小写的字母等都会被转换成 bool 值的参数 True,这就是所谓模糊验证参数,对于开发者来说这是个好消息。
要知道的是,如果short 参数没有默认值,则必须传参,否则 FastAPI 将会返回类似以下的错误信息。
{
"detail": [
{
"loc": [
"query",
"needy"
],
"msg":"field required",
"type":"value_error.missing"
}
]
}
创建数据模型
前面说到 FastAPI依赖 Pydantic 模块,所以首先,你需要导入 Pydantic 的 BaseModel 类。
fromfastapiimportFastAPI
frompydanticimportBaseModel
# 请求主体类
classItem(BaseModel):
name: str = "武汉加油 !!"
description: str =None
price: float = 233
tax: float =None
app = FastAPI()
@app.post("/items/")
asyncdefcreate_item(item: Item):
returnitem
发送 post 请求来提交一个 Item(请求主体) 并返回,来看看提交过程。
成功提交并返回 200 状态码
请求主体+路径+查询参数,在请求主体的基础上加入 url动态路径参数 和 查询参数
fromfastapiimportFastAPI
frompydanticimportBaseModel
classItem(BaseModel):
name: str
description: str =None
price: float
tax: float =None
app = FastAPI()
@app.put("/items/{item_id}")
asyncdefcreate_item(item_id: int, item: Item, q: str = None):
result = {"item_id": item_id, **item.dict()}
ifq:
result.update({"q": q})
returnresult
put 方法用于更新,传入参数后成功返回一个字典。
关于模板引擎
FastAPI 不像 Flask 那样自带 模板引擎(Jinja2),也就是说没有默认的模板引擎,从另一个角度上说,FastAPI 在模板引擎的选择上变得更加灵活,极度舒适。
以 Jinja2 模板为例
安装依赖
pip install jinja2
pip install aiofiles # 用于 fastapi 的异步静态文件
具体的用法
# -*- coding:utf-8 -*-
fromfastapiimportFastAPI, Request
fromfastapi.staticfilesimportStaticFiles
fromfastapi.templatingimportJinja2Templates
importuvicorn
app = FastAPI()
app.mount("/static", StaticFiles(directory="static"), name="static")# 挂载静态文件,指定目录
templates = Jinja2Templates(directory="templates")# 模板目录
@app.get("/data/{data}")
asyncdefread_data(request: Request, data: str):
returntemplates.TemplateResponse("index.html", {"request": request,"data": data})
if__name__ =='__main__':
uvicorn.run(app, host="127.0.0.1", port=8000)
html 文件渲染
武汉加油
高呼: {{ data }}
在浏览器键入http://127.0.0.1:8000/data/武汉加油
值得注意的是,在返回的 TemplateRespone 响应时,必须带上 request 的上下文对象,传入参数放在同一字典。
这样一来,又可以像 Flask 一样的使用熟悉的 Jinja2 了,哈哈。
做个小总结的话就是FastAPI 在用法上也是及其简单,速度更快,性能更好,容错率更高,整体上更牛逼。但是我在设想如此之快的框架,毕竟发布的时间不长,缺少像 Flask框架的第三方库和各种插件,所以要想真正意义上替代还是需要一定的时间,要冷静,冷静。
好啊,至此 FastAPI 的一些基本用法就差不多结束啦,FastAPI 的官方文档有详细的介绍和实例,入门篇到此结束。
官方文档:https://fastapi.tiangolo.com/