【机器学习+NER】手把手教你用机器学习CRF模型构建NER系统(CCL2021)

【机器学习+NER】手把手教你用机器学习CRF模型构建NER系统(CCL2021)

数据集来源:2021年中文计算语言学研究大会的智能对话诊疗评测比赛

任务:利用机器学习CRF模型构建NER系统,得到下图所示的评估指标
【机器学习+NER】手把手教你用机器学习CRF模型构建NER系统(CCL2021)_第1张图片

原始数据处理参考:医疗命名体识别之数据预处理(处理.json文件)

文章目录

      • 【机器学习+NER】手把手教你用机器学习CRF模型构建NER系统(CCL2021)
        • 一、环境搭建
        • 二、数据类型处理
        • 三、训练模型
        • 四、结果分析
        • 五、完整源码

一、环境搭建

此处机器学习CRF模型主要使用sklearn_crfsuite库调用CRF进行搭建;

可以通过:

pip install sklearn_crfsuite

安装sklearn_crfsuite库

二、数据类型处理

  1. 该数据集含有11类标签,分别为“0”、“B-Symptom”、“I-Symptom”、“B-Drug_Category”、“I-Drug_Category”、“B-Drug”、“I-Drug”、“B-Medical_Examination”、“I-Medical_Examination”、“B-Operation”、“I-Operation”给数据标签一个索引,即:
    # CCL2021数据标签:
    label2idx = {'O': 0,
                 'B-Symptom': 1, 'I-Symptom': 2,
                 'B-Drug_Category': 3, 'I-Drug_Category': 4,
                 'B-Drug': 5, 'I-Drug': 6,
                 'B-Medical_Examination': 7, 'I-Medical_Examination': 8,'B-Operation': 9, 'I-Operation': 10
                 }
    
  2. 将索引和标签一一对应,存储到idx2label
    idx2label = {idx: label for label, idx in label2idx.items()}
    
  3. 读取字符字典文件
    with open(char_vocab_path, "r", encoding="utf8") as fo:
        char_vocabs = [line.strip() for line in fo]
    char_vocabs = special_words + char_vocabs
    
  4. 将字符与索引编号对应,便于后续查找字符
    idx2vocab = {idx: char for idx, char in enumerate(char_vocabs)}
    vocab2idx = {char: idx for idx, char in idx2vocab.items()}
    
  5. 读取训练语料,将原始数据7成划分为训练集,3成划分为测试集,返回数据和标签
    # 读取训练语料
    def read_corpus(corpus_path, vocab2idx, label2idx, flag):
        datas, labels = [], []
        with open(corpus_path, encoding='utf-8') as fr:
            lines = fr.readlines()
        sent_, tag_ = [], []
        if flag == "train":
            lines = lines[:int(len(lines) * 0.7)]
        else:
            lines = lines[int(len(lines) * 0.7):]
        for line in lines:
            if line != '\n':
                [char, label] = line.strip().split()
                sent_.append(char)
                tag_.append(label)
            else:
                sent_ids = [vocab2idx[char] if char in vocab2idx else vocab2idx[''] for char in sent_]
                tag_ids = [label2idx[label] if label in label2idx else 0 for label in tag_]
                datas.append(sent_ids)
                labels.append(tag_ids)
                sent_, tag_ = [], []
        return datas, labels
    
    # 加载训练集 7成
    train_datas, train_labels = read_corpus(train_data_path, vocab2idx, label2idx, flag="train")
    # 加载测试集 3成
    test_datas, test_labels = read_corpus(train_data_path, vocab2idx, label2idx, flag="test")
    
  6. 简单测试一下,看数据是否对应上了
    print(train_datas[8])
    print([idx2vocab[idx] for idx in train_datas[8]])
    print(train_labels[8])
    print([idx2label[idx] for idx in train_labels[8]])
    # 输出结果为:
    #[1578, 5558, 2641, 5795, 2644, 3078, 2644, 939, 893, 3844, 3575, 946, 6821]
    #['宝', '贝', '最', '近', '有', '没', '有', '呕', '吐', '症', '状', '呢', '?']
    #[0, 0, 0, 0, 0, 0, 0, 1, 2, 0, 0, 0, 0]
    #['O', 'O', 'O', 'O', 'O', 'O', 'O', 'B-Symptom', 'I-Symptom', 'O', 'O', 'O', 'O']
    #第一行数据为字符对应的索引
    #第二行为字符
    #第三行为标签索引
    #第四行为标签
    
  7. 转换数据格式,分别将数据与标签转换成CRF模型支持的数据格式
    # 得到训练数据、训练数据标签
    labels = []
    datas = []
    for i in range(len(train_labels)):
        datas.append([idx2vocab[idx] for idx in train_datas[i]])
    
    train_datas = datas
    # print(train_datas)
    
    for i in range(len(train_labels)):
        labels.append([idx2label[idx] for idx in train_labels[i]])
    
    train_labels = labels
    # print(train_labels)
    
    # 得到测试数据、测试数据标签
    labels = []
    datas = []
    for i in range(len(test_labels)):
        datas.append([idx2vocab[idx] for idx in test_datas[i]])
    
    test_datas = datas
    
    for i in range(len(test_labels)):
        labels.append([idx2label[idx] for idx in test_labels[i]])
    
    test_labels = labels
    

三、训练模型

  1. 利用sklearn_crfsuite库调用CRF模型,默认采用lbfgs算法
    crf = sklearn_crfsuite.CRF(
        algorithm='lbfgs',
        c1=0.1,
        c2=0.1,
        max_iterations=100,
        all_possible_transitions=True
    )
    
  2. 利用训练数据和训练数据标签训练模型
    crf.fit(train_datas, train_labels)
    
  3. 利用测试数据,预测测试数据标签
    test_pred = crf.predict(test_datas)
    
  4. 统计整个数据的标签信息,并进行排序
    labels = list(crf.classes_)
    # labels.remove('O')
    sorted_labels = sorted(
        labels,
        key=lambda name: (name[1:], name[0])
    )
    
  5. 为了满足classification_report的数据格式要求,我们对测试集数据标签与预测结果标签进行数据格式转换,转换成一位列表
    # 转换成一维列表
    label = []
    pred = []
    for i in range(len(test_labels)):
        for j in range(len(test_labels[i])):
            label.append(test_labels[i][j])
    
    test_labels = label
    
    
    for i in range(len(test_pred)):
        for j in range(len(test_pred[i])):
            pred.append(test_pred[i][j])
    
    test_pred = pred
    
  6. 输出分类结果报告,得到结果
    print(classification_report(
        test_labels, test_pred, target_names=sorted_labels
    ))
    

四、结果分析

【机器学习+NER】手把手教你用机器学习CRF模型构建NER系统(CCL2021)_第2张图片

从评估结果可以看出,模型对精准率的宏平均值macro avg=0.90,加权平均值weighted avg=0.97。由此可以得出模型预测的正样本中精确率达到90%以上;

模型对于召回率recall的宏平均值macro avg=0.89,加权平均值weighted avg=0.97,因而模型对于正样本的分类准确率能达到89%%,加权平均值weighted avg=0.97说明大部分正样本的分类准确率为97%。

模型对于F1-score的宏平均值macro avg=0.89,加权平均值weighted avg=0.97,说明模型的召回率和精准率都很高,模型对于正样本的预测效果和正样本预测中的准确性都很好。

五、完整源码

import sklearn_crfsuite
from sklearn.metrics import classification_report

char_vocab_path = "./data/char_vocabs.txt"  # 字典文件
train_data_path = "./data/train_data.txt"  # 训练测试数据
special_words = ['', '']  # 特殊词表示
# CCL2021数据标签:
label2idx = {'O': 0,
             'B-Symptom': 1, 'I-Symptom': 2,
             'B-Drug_Category': 3, 'I-Drug_Category': 4,
             'B-Drug': 5, 'I-Drug': 6,
             'B-Medical_Examination': 7, 'I-Medical_Examination': 8,
             'B-Operation': 9, 'I-Operation': 10
             }

# 索引和BIO标签对应
idx2label = {idx: label for label, idx in label2idx.items()}
# print(idx2label)

# 读取字符词典文件
with open(char_vocab_path, "r", encoding="utf8") as fo:
    char_vocabs = [line.strip() for line in fo]
char_vocabs = special_words + char_vocabs
# print(char_vocabs)

# 字符和索引编号对应
idx2vocab = {idx: char for idx, char in enumerate(char_vocabs)}
vocab2idx = {char: idx for idx, char in idx2vocab.items()}
# print(idx2vocab)
# print(idx2vocab)


# 读取训练语料
def read_corpus(corpus_path, vocab2idx, label2idx, flag):
    datas, labels = [], []
    with open(corpus_path, encoding='utf-8') as fr:
        lines = fr.readlines()
    sent_, tag_ = [], []
    if flag == "train":
        lines = lines[:int(len(lines) * 0.7)]
    else:
        lines = lines[int(len(lines) * 0.7):]
    for line in lines:
        if line != '\n':
            [char, label] = line.strip().split()
            sent_.append(char)
            tag_.append(label)
        else:
            sent_ids = [vocab2idx[char] if char in vocab2idx else vocab2idx[''] for char in sent_]
            tag_ids = [label2idx[label] if label in label2idx else 0 for label in tag_]
            datas.append(sent_ids)
            labels.append(tag_ids)
            sent_, tag_ = [], []
    return datas, labels


# 加载训练集 7成
train_datas, train_labels = read_corpus(train_data_path, vocab2idx, label2idx, flag="train")
# 加载测试集 3成
test_datas, test_labels = read_corpus(train_data_path, vocab2idx, label2idx, flag="test")

# 输出看数据是否对应上了,"呕吐"
# print(train_datas[8])
# print([idx2vocab[idx] for idx in train_datas[8]])
# print(train_labels[8])
# print([idx2label[idx] for idx in train_labels[8]])

# 得到训练数据、训练数据标签
labels = []
datas = []
for i in range(len(train_labels)):
    datas.append([idx2vocab[idx] for idx in train_datas[i]])

train_datas = datas
# print(train_datas)

for i in range(len(train_labels)):
    labels.append([idx2label[idx] for idx in train_labels[i]])

train_labels = labels
# print(train_labels)

# 得到测试数据、测试数据标签
labels = []
datas = []
for i in range(len(test_labels)):
    datas.append([idx2vocab[idx] for idx in test_datas[i]])

test_datas = datas

for i in range(len(test_labels)):
    labels.append([idx2label[idx] for idx in test_labels[i]])

test_labels = labels

# 训练
crf = sklearn_crfsuite.CRF(
    algorithm='lbfgs',
    c1=0.1,
    c2=0.1,
    max_iterations=100,
    all_possible_transitions=True
)

crf.fit(train_datas, train_labels)

labels = list(crf.classes_)
# labels.remove('O')

# 预测
test_pred = crf.predict(test_datas)

sorted_labels = sorted(
    labels,
    key=lambda name: (name[1:], name[0])
)

# 转换成一维数组
label = []
pred = []
for i in range(len(test_labels)):
    for j in range(len(test_labels[i])):
        label.append(test_labels[i][j])

test_labels = label


for i in range(len(test_pred)):
    for j in range(len(test_pred[i])):
        pred.append(test_pred[i][j])

test_pred = pred

print(classification_report(
    test_labels, test_pred, target_names=sorted_labels
))

你可能感兴趣的:(笔记,机器学习,python,sklearn)