I2C是一种同步通信,以半双工方式传送的串行总线。由数据线SDA和时钟SCL构成的,可发送和接收数据。在CPU与被控IC之间、IC与IC之间进行双向传送,高速IIC总线一般可达400kbps以上。
1.读数据:指MCU从器件的数据总线上根据一定的时序来读取器件的数据。一般而言,MCU提供一个边沿信号,告诉器件可以发数据了,器件检测到边沿信号以后,立即在数据总线上更新数据,待数据稳定以后,MCU即可读取数据。
2. 写数据:是指MCU向器件写入数据,其操作是:先将数据放置在数据总线上,等待其稳定之后,MCU产生一个边沿信号,将数据写入器件
3.IIC总线读写数据
1. 包含空闲状态、起始信号、停止信号、应答信号、数据的有效性、数据传输
简单来讲:(先忽略应答信号;图中SCL为同一个脉冲)
参考博客:I2C 时序详解,精确到每一个时钟_谁de如花的博客-CSDN博客_i2c时钟
4.1 MCU通过IIC写数据到器件,连续写入两个字节
要点:
4.2 MCU通过IIC读取器件的数据,读取两个字节
要点:
#define SDA_IN() {GPIOB->CRL&=0X0FFFFFFF;GPIOB->CRL|=(u32)8<<28;}
#define SDA_OUT() {GPIOB->CRL&=0X0FFFFFFF;GPIOB->CRL|=(u32)3<<28;}
//IO操作函数
#define IIC_SCL PBout(6) //SCL
#define IIC_SDA PBout(7) //SDA
#define READ_SDA PBin(7) //输入SDA
//初始化IIC
void IIC_Init(void)
{
GPIO_InitTypeDef GPIO_InitStructure;
RCC_APB2PeriphClockCmd( RCC_APB2Periph_GPIOB, ENABLE ); //使能GPIOB时钟
GPIO_InitStructure.GPIO_Pin = GPIO_Pin_6|GPIO_Pin_7;
GPIO_InitStructure.GPIO_Mode = GPIO_Mode_Out_PP ; //推挽输出
GPIO_InitStructure.GPIO_Speed = GPIO_Speed_50MHz;
GPIO_Init(GPIOB, &GPIO_InitStructure);
GPIO_SetBits(GPIOB,GPIO_Pin_6|GPIO_Pin_7); //PB6,PB7 输出高
}
//产生IIC起始信号
void IIC_Start(void)
{
SDA_OUT(); //sda线输出
IIC_SDA=1;
IIC_SCL=1;
delay_us(4);
IIC_SDA=0;//when CLK is high,DATA change form high to low
delay_us(4);
IIC_SCL=0;//钳住I2C总线,准备发送或接收数据
}
//产生IIC停止信号
void IIC_Stop(void)
{
SDA_OUT();//sda线输出
IIC_SCL=0;
IIC_SDA=0;//STOP:when CLK is high DATA change form low to high
delay_us(4);
IIC_SCL=1;
IIC_SDA=1;//发送I2C总线结束信号
delay_us(4);
}
//等待应答信号到来
//返回值:1,接收应答失败
// 0,接收应答成功
u8 IIC_Wait_Ack(void)
{
u8 ucErrTime=0;
SDA_IN(); //SDA设置为输入
IIC_SDA=1;delay_us(1);
IIC_SCL=1;delay_us(1);
while(READ_SDA)
{
ucErrTime++;
if(ucErrTime>250)
{
IIC_Stop();
return 1;
}
}
IIC_SCL=0;//时钟输出0
return 0;
}
//产生ACK应答
void IIC_Ack(void)
{
IIC_SCL=0;
SDA_OUT();
IIC_SDA=0;//低电平期间将SDA线拉低
delay_us(2);
IIC_SCL=1;
delay_us(2);
IIC_SCL=0;
}
//不产生ACK应答
void IIC_NAck(void)
{
IIC_SCL=0;
SDA_OUT();
IIC_SDA=1;//低电平期间不拉低SDA线
delay_us(2);
IIC_SCL=1;
delay_us(2);
IIC_SCL=0;
}
//MCU通过IIC往从机写入一个字节
//返回从机有无应答
//1,有应答
//0,无应答
void IIC_Send_Byte(u8 txd)
{
u8 t;
SDA_OUT();//设置SDA 为输出
IIC_SCL=0;//拉低时钟开始数据传输
for(t=0;t<8;t++)
{
IIC_SDA=(txd&0x80)>>7;//SCL低电平期间,主机将一位数据放置SDA上
txd<<=1;
delay_us(2);
IIC_SCL=1;//SCL高电平期间,往从机写入数据
delay_us(2);
IIC_SCL=0;
delay_us(2);
}
}
//MCU通过IIC读取从机一个字节,ack=1时,发送ACK,ack=0,发送nACK
u8 IIC_Read_Byte(unsigned char ack)
{
unsigned char i,receive=0;
SDA_IN();//SDA设置为输入
for(i=0;i<8;i++ )
{
IIC_SCL=0;//SCL低电平期间,从机将数据放在SDA上
delay_us(2);
IIC_SCL=1;//SCL高电平期间,主机读取SDA数据
receive<<=1;
if(READ_SDA)receive++;
delay_us(1);
}
if (!ack)
IIC_NAck();//发送nACK
else
IIC_Ack(); //发送ACK
return receive;
}
6.2402芯片的使用
(1)芯片的寻址:
AT24C设备地址为如下,前四位固定为1010,A2~A0为由管脚电平。AT24CXX EEPROM Board模块中默认为接地。A2-A0=000,最后一位表示读写操作。所以AT24Cxx的读地址为0xA1,写地址为0xA0。
也就是说如果是
写24C02的时候,从器件地址为10100000(0xA0);
读24C02的时候,从器件地址为10100001(0xA1)。
(2)片内地址寻址:
芯片寻址可对内部256B中的任一个进行读/写操作,其寻址范围为00~FF,共256个寻址单位。
具体解释:
由于24C02只有256个字节的存储空间,所以只需要1个字节就可以寻址完24C02的存储空间,但是无法寻址完更大容量的存储IC,比如24C04的存储容量是512字节,需要9个bit的地址位才能寻址完。由上图可以看到,24C04的设备地址内是没有A0参数的,被a8代替了,这个a8就是24C04的第9个bit的地址位,也就是说24C04的A0引脚是不起作用的,这样也就造成了在I2C总线上只能同时挂载4个24C04芯片。其它存储器如24C08、24C16也可以这么类推。
24C02的WP引脚是写保护引脚,当WP引脚接高电平的时,24C02只能进行读取操作,不能进行写操作。只有当WP引脚悬空或接低电平时,24C02才能进行写操作。