【如何在anaconda虚拟环境中安装多个版本的CUDA,cudnn,pytorch,torchvision,torchaudio及进行环境配置手把手教学】

如何在anaconda虚拟环境中安装多个版本的CUDA,cudnn,pytorch,torchvision,torchaudio及进行环境配置手把手教学

  • 0,操作代码汇总
  • 1,查看/更新nvidia驱动版本号
  • 2,创建虚拟环境
  • 3,查看cuda(cudatoolkit)和cudnn版本
  • 4,安装cuda(cudatoolkit)和cudnn
  • 5,安装pytorch,torchvision,torchaudio
  • 6,验证是否安装成功

若需要使用不同版本的cuda,只需创建不同的虚拟环境,下载所需的cuda及cudnn版本即可。

0,操作代码汇总

以cuda11.3,cudnn8.2.1为例

查看/更新驱动上限

创建环境:
conda create -n cuda11_3_cudnn8_2_1_env python=3.8
激活环境:
conda activate cuda11_3_cudnn8_2_1_env
查询cuda版本:
conda search cudatoolkit --info
查询cudnn版本:
conda search cudnn --info
安装cuda:
conda install cudatoolkit=11.3
安装cudnn:
conda install cudnn=8.2.1
安装pytorch,torchvision,torchaudio:
conda install pytorch torchvision torchaudio cudatoolkit=11.3 -c pytorch
验证:
conda list
python
import torch
torch.cuda.is_available()

返回true为成功

具体操作:

1,查看/更新nvidia驱动版本号

先更新驱动,后查看版本。也可以不更新,直接查看。
【如何在anaconda虚拟环境中安装多个版本的CUDA,cudnn,pytorch,torchvision,torchaudio及进行环境配置手把手教学】_第1张图片
GeForce Experience可以更新为最新版本驱动
【如何在anaconda虚拟环境中安装多个版本的CUDA,cudnn,pytorch,torchvision,torchaudio及进行环境配置手把手教学】_第2张图片
控制面板查看当前最高能支持的cuda版本
我这里最高支持11.7.99

2,创建虚拟环境

以管理员身份进入Anaconda Promot

conda create -n cuda11_3_cudnn8_2_1_env python=3.8

【如何在anaconda虚拟环境中安装多个版本的CUDA,cudnn,pytorch,torchvision,torchaudio及进行环境配置手把手教学】_第3张图片
激活环境

conda activate cuda11_3_cudnn8_2_1_env

【如何在anaconda虚拟环境中安装多个版本的CUDA,cudnn,pytorch,torchvision,torchaudio及进行环境配置手把手教学】_第4张图片

3,查看cuda(cudatoolkit)和cudnn版本

查看conda支持的cuda版本,选择合适的版本

conda search cudatoolkit --info

【如何在anaconda虚拟环境中安装多个版本的CUDA,cudnn,pytorch,torchvision,torchaudio及进行环境配置手把手教学】_第5张图片
可以看到最新支持到11.3.1,要求cuda必须>=11.3,我是11.7,满足。

查看conda支持的cudnn版本,选择合适的版本

conda search cudnn --info

【如何在anaconda虚拟环境中安装多个版本的CUDA,cudnn,pytorch,torchvision,torchaudio及进行环境配置手把手教学】_第6张图片
可以看到最新支持到8.2.1,要求cudatoolkit在11.0到11.4之间,我是11.3,满足。

4,安装cuda(cudatoolkit)和cudnn

conda install cudatoolkit=11.3

【如何在anaconda虚拟环境中安装多个版本的CUDA,cudnn,pytorch,torchvision,torchaudio及进行环境配置手把手教学】_第7张图片

conda install cudnn=8.2.1

【如何在anaconda虚拟环境中安装多个版本的CUDA,cudnn,pytorch,torchvision,torchaudio及进行环境配置手把手教学】_第8张图片

5,安装pytorch,torchvision,torchaudio

进入https://pytorch.org/get-started/locally/
【如何在anaconda虚拟环境中安装多个版本的CUDA,cudnn,pytorch,torchvision,torchaudio及进行环境配置手把手教学】_第9张图片
选择对应版本,复制官方给的代码

conda install pytorch torchvision torchaudio cudatoolkit=11.3 -c pytorch

【如何在anaconda虚拟环境中安装多个版本的CUDA,cudnn,pytorch,torchvision,torchaudio及进行环境配置手把手教学】_第10张图片

6,验证是否安装成功

conda list

查看是否下载好对应版本
代码验证,进入python代码模式

python
import torch

没返回异常,说明pytorch装好了

torch.cuda.is_available()

返回true,说明cuda也装好了
在这里插入图片描述

你可能感兴趣的:(软件安装,python,conda,pytorch,机器学习,深度学习)