- 探索Redux:构建可预测、可测试的JavaScript应用
黎杉娜Torrent
探索Redux:构建可预测、可测试的JavaScript应用learn-redux:boom:ComprehensiveNotesforLearning(howtouse)ReduxtomanagestateinyourWeb/Mobile(React.js)Apps.项目地址:https://gitcode.com/gh_mirrors/le/learn-redux项目介绍在现代Web开发中,J
- 【学习笔记】李宏毅2021春机器学习课程第2.3节:Adaptive Learning Rate
Harryline-lx
机器学习机器学习人工智能深度学习
文章目录Trainingstuck≠SmallGradientDifferentparametersneedsdifferentlearningrateRootmeansquareAdagradRMSPropAdamLearningRateSchedulingTrainingstuck≠SmallGradient首先要明确的一点是,目前当我们用gradientdescend来做optimizati
- 【deepseek】论文笔记--DeepSeek-R1: Incentivizing Reasoning Capability in LLMs via Reinforcement Learning
大表哥汽车人
人工智能大语言模型学习笔记论文阅读人工智能deepseek
DeepSeek-R1论文解析1.论文基本信息标题:DeepSeek-R1:IncentivizingReasoningCapabilityinLLMsviaReinforcementLearning作者:DeepSeek-AI团队(联系邮箱:
[email protected])发表时间与出处:2024年,AIME2024(人工智能与数学教育国际会议)关键词:ReinforcementLe
- ECE 219 Models and Algorithms
后端
Large-ScaleDataMining:ModelsandAlgorithmsECE219Winter2025Project2:DataRepresentationsandClusteringDueFebruary07,2025by11:59pmIntroductionMachinelearningalgorithmsareappliedtoawidevarietyofdata,includi
- 论文代码阅读及部分复现:Revisiting Deep Learning Models for Tabular Data
thorn_r
论文阅读深度学习人工智能
论文地址:https://arxiv.org/pdf/2106.11959.pdf项目地址:GitHub-yandex-research/rtdl-revisiting-models:(NeurIPS2021)RevisitingDeepLearningModelsforTabularData相关数据:https://www.dropbox.com/s/o53umyg6mn3zhxy/2024年2
- 【论文阅读】Revisiting the Assumption of Latent Separability for Backdoor Defenses
开心星人
论文阅读论文阅读
https://github.com/Unispac/Circumventing-Backdoor-Defenses摘要和介绍在各种后门毒化攻击中,来自目标类别的毒化样本和干净样本通常在潜在空间中形成两个分离的簇。这种潜在的分离性非常普遍,甚至在防御研究中成为了一种默认假设,我们称之为潜在分离性假设。基于这一假设设计的防御方法通过在潜在空间中进行聚类分析来识别毒化样本。具体来说,这些防御方法首先在
- 零基础入门机器学习 -- 第一章什么是机器学习?
山海青风
#机器学习机器学习人工智能python
1.1机器学习的定义机器学习(MachineLearning,ML)是让计算机从数据中学习,然后在没有明确编程的情况下进行预测或决策的技术。传统编程:程序员写出明确的规则,例如“如果温度低于0℃,显示‘结冰’”。机器学习:计算机分析历史天气数据,自行找出“低温→可能结冰”的规律,然后对新数据进行预测。机器学习的核心思想是:数据+算法=经验+预测能力。1.2机器学习vs传统编程特点传统编程机器学习规
- [论文阅读] CLIP-based fusion-modal reconstructing hashing for large-scaleunsupervised cross-modal retri
2301_80732299
论文阅读
摘要随着多模态数据的激增,人们不再满足于单一的数据检索模式来获取信息。深度哈希检索算法以其存储效率高、查询速度快等优点受到广泛关注。目前,现有的无监督哈希方法普遍存在两方面的局限性:(1)现有方法不能充分捕获不同模态数据中潜在的语义相关性和共存信息,导致缺乏有效的特征和哈希编码表示来弥合多模态数据中的异构和语义差距。(2)现有的无监督方法通常构造相似矩阵来指导哈希码学习,存在不准确的相似度问题,导
- HAMIL-QA:心房 LGE MRI 质量评估的多实例学习分层方法
小杨小杨1
#全监督学习
文章目录HAMIL-QA:HierarchicalApproachtoMultipleInstanceLearningforAtrialLGEMRIQualityAssessment摘要方法实验结果HAMIL-QA:HierarchicalApproachtoMultipleInstanceLearningforAtrialLGEMRIQualityAssessment摘要背景:通过高质量的3D晚
- Python 中如何 import 绝对路径的模块
斐硕人
僧旅python开发语言后端
问题:jupter-lab使用时用到其他文件夹下的一个自定义模块,试图使用绝对路径导入解决方式:importsyssys.path.append('模块所在路径')import路径下需要的模块使用场景:importsyssys.path.append('/Users/feishuoren/Projects/pytorch_learning/')#自定义模块fromtorchLearningimpo
- DeepSeek底层揭秘——知识图谱与语料库的联邦学习架构
9命怪猫
知识图谱架构人工智能
目录1.知识图谱与语料库的联邦学习架构2.技术要素3.技术难点与挑战4.技术路径5.应用场景6.最新研究与技术进展7.未来趋势8.实际案例猫哥说1.知识图谱与语料库的联邦学习架构(1)定义“知识图谱与语料库的联邦学习架构”是一种结合知识图谱(KnowledgeGraph,KG)、语料库(Corpus)和联邦学习(FederatedLearning,FL)的分布式学习框架。其核心目标是通过联邦学习技
- 书籍-《机器学习数学基础》
机器学习深度学习数学
书籍:MathematicsforMachineLearning作者:MarcPeterDeisenroth,A.AldoFaisal,ChengSoonOng出版:CambridgeUniversityPress编辑:陈萍萍的公主@一点人工一点智能下载:书籍下载-《机器学习数学基础》01书籍介绍理解机器学习所需的基本数学工具包括线性代数、解析几何、矩阵分解、向量微积分、最优化、概率论和统计学。这
- 书籍-《强化学习数学基础》
强化学习数学人工智能
书籍:MathematicalFoundationsofReinforcementLearning作者:赵世钰出版:Springer编辑:陈萍萍的公主@一点人工一点智能下载:书籍下载-《强化学习数学基础》01书籍介绍本书对基本概念、核心挑战和经典强化学习算法进行了数学但易于理解的介绍。它旨在帮助读者理解算法的理论基础,提供对其设计和功能的见解。整个过程中包括许多说明性示例。数学内容经过精心设计,以
- 攻克AWS认证机器学习工程师(AWS Certified Machine Learning Engineer) - 助理级别认证:我的成功路线图
硅基创想家
AI-人工智能与大模型aws机器学习云计算AWS认证
引言当我决定考取AWS认证机器学习工程师-助理(AWSCertifiedMachineLearningEngineer—Associate)级别证书时,我就预料到这将是一段充满挑战但回报颇丰的旅程。跟你说吧,它在这两方面都没让我失望。这项考试面向的是不仅理解机器学习原理,还对AWS生态系统有扎实基础认知的专业人士。如果你还未达到AWS认证解决方案架构师-助理级别的水平,那你得先夯实这些基础。一个不
- 【Elasticsearch】Token Graphs
risc123456
Elasticsearchelasticsearch
Elasticsearch的TokenGraphs是一种用于处理文本分析的高级功能,主要用于处理多词同义词、短语匹配等复杂场景。以下是关于TokenGraphs的详细解释:1.什么是TokenGraphsTokenGraphs是一种有向无环图(DAG),用于表示文本流中的标记(tokens)及其位置关系。在TokenGraph中:•每个位置(position)表示一个节点(node)。•每个标记(
- 强化学习算法:蒙特卡洛树搜索 (Monte Carlo Tree Search) 原理与代码实例讲解
杭州大厂Java程序媛
DeepSeekR1&AI人工智能与大数据javapythonjavascriptkotlingolang架构人工智能
强化学习算法:蒙特卡洛树搜索(MonteCarloTreeSearch)原理与代码实例讲解关键词:蒙特卡洛树搜索,强化学习,决策树,搜索算法,博弈策略,应用场景,代码实现1.背景介绍1.1问题由来强化学习(ReinforcementLearning,RL)是人工智能领域的一个核心分支,专注于通过与环境交互,学习最优策略以实现特定目标。传统的强化学习算法,如Q-learning、SARSA等,通常依
- 推荐项目:AWS Certified Machine Learning Specialty (MLS-C01) 课程
赵鹰伟Meadow
推荐项目:AWSCertifiedMachineLearningSpecialty(MLS-C01)课程AmazonSageMakerCourseInthisAWSMachineLearningSpecialtyCourse,Youwillgainfirst-handexperienceonhowtotrain,optimize,deploy,andintegrateMLinAWScloud.Le
- AnyPlace:学习机器人操作的泛化目标放置
硅谷秋水
计算机视觉大模型智能体机器人机器学习计算机视觉人工智能语言模型深度学习
25年2月来自多伦多大学、VectorInst、上海交大等机构的论文“AnyPlace:LearningGeneralizedObjectPlacementforRobotManipulation”。由于目标几何形状和放置的配置多种多样,因此在机器人任务中放置目标本身就具有挑战性。为了解决这个问题,AnyPlace,一种完全基于合成数据训练的两阶段方法,能够预测现实世界任务中各种可行的放置姿势。其
- 17.推荐系统的在线学习与实时更新
郑万通
推荐系统
接下来就讲解推荐系统的在线学习与实时更新。推荐系统的在线学习和实时更新是为了使推荐系统能够动态地适应用户行为的变化,保持推荐结果的实时性和相关性。以下是详细的介绍和实现方法。推荐系统的在线学习与实时更新在线学习的概念在线学习(OnlineLearning)是一种机器学习方法,与传统的批量学习(BatchLearning)不同,在线学习模型能够在数据流到达时逐步更新,而不是在整个数据集上训练一次。这
- KDD 2023 | 先睹为快!KDD 2023论文合集50篇(附下载地址)
马拉AI
机器学习人工智能深度学习
下载地址:点我跳转1.DoubleAdapt:AMeta-learningApproachtoIncrementalLearningforStockTrendForecastingCode:NoneArea:一种用于股票趋势预测增量学习的元学习方法2.HomoGCL:RethinkingHomophilyinGraphContrastiveLearningCode:https://github.c
- F-PointNet 论文阅读理解
咸鱼和白菜
目标检测f-pointnet点云目标检测
总述本文提出一种方法:使用成熟的2D的目标检测方法中cnn提供的regionproposal和3D的目标检测定位(也就是pointnet处理点云),将二者结合利用RGB-D映射和一个叫做锥体(Frustum)?形成一个3D的box参数进行输出。本文主要贡献就是在“一个叫做锥(Frustum)”的使用上结合2D的regionpropos和点云进行3D的分割和box的输出。为方便理解与书写,按照文中顺
- 蓝桥杯真题 - 更小的数 - 题解
ExRoc
蓝桥杯c++算法
题目链接:https://www.lanqiao.cn/problems/3503/learning/个人评价:难度2星(满星:5)前置知识:区间dp整体思路反转区间[l,r][l,r][l,r]内的数字,范围外所有数字仍然与原数相等,所以只要[l,r][l,r][l,r]范围内的数字反转后比原来小,整个数字就比原来的数字小;朴素的比较方法是:O(n2)O(n^2)O(n2)枚举所有区间,对于被反
- 快速搭建GRU循环神经网络预测模型
智汇未来
rnn深度学习gru人工智能神经网络matlab算法
首先,我需要使用GRU神经网络进行预测。GRU是GatedRecurrentUnit的缩写,是一种常用的循环神经网络结构,适用于序列数据的预测任务。但是,我需要确保MATLAB支持GRU网络的创建和训练。让我想想,MATLAB的DeepLearningToolbox提供了设计和训练神经网络的功能,包括GRU层。等等,我需要确认一下如何在MATLAB中创建包含GRU层的网络。好的,那我就开始写代码吧
- 探索计算机视觉的基石:PASCAL VOC 数据集
卢姬铃Edric
探索计算机视觉的基石:PASCALVOC数据集1目标检测PASCALVOC数据集简介项目地址:https://gitcode.com/Resource-Bundle-Collection/dc7bf项目介绍PASCALVOC(PatternAnalysis,StatisticalModelingandComputationalLearningVisualObjectClasses)挑战赛是计算机视
- 迁移学习 Transfer Learning
有人给我介绍对象吗
模块迁移学习人工智能机器学习
迁移学习(TransferLearning)是什么?迁移学习是一种机器学习方法,它的核心思想是利用已有模型的知识来帮助新的任务或数据集进行学习,从而减少训练数据的需求、加快训练速度,并提升模型性能。1.为什么需要迁移学习?在深度学习任务(如目标检测、分类)中,通常需要大量数据和计算资源来训练一个高性能模型。然而,在某些场景下,我们面临以下挑战:数据有限:有些领域(如医学影像、多光谱图像)很难收集足
- deepseek学习笔记
wsnzou
学习笔记
原计划是基于BERT或者GPT做一些自然语言处理的应用研究,deepseek出来之后,决定使用deepseek来做,相信能够获得更好的效果。1、deepseek的论文deepseek的论文《DeepSeek-R1:IncentivizingReasoningCapabilityinLLMsviaReinforcementLearning》于2025年1月下旬同步发布在了github和arxiv上。
- 详解Redis中lua脚本和事务
优人ovo
redislua数据库
Inlearningknowledge,oneshouldbegoodatthinking,thinking,andthinkingagain.—-AlbertEinstein引言Lua脚本的原子性和事务的ACID特性想必大家都很熟悉,本篇文章将从性能表现和原理帮助我们快速理解他们基本概念1.RedisLua脚本从2.6版本起,Redis开始支持Lua脚本。开发者能够将一系列Redis命令封装于一
- WPF入门_06资源和样式
思忖小下
WPFwpf资源和样式
目录1、资源基础介绍2、静态资源和动态资源区别3、资源字典4、共享资源的方法5、在CustomControlLibrary中定义和使用共享资源6、样式7、样式触发器1、资源基础介绍尽管每个元素都提供了Resources属性,但通常在窗口级别上定义资源,如下定义一个字符串资源LearningHard博客:http://www.cnblogs.com/zhili/2、静态资源和动态资源区别(参照代码:
- DeepSeek联邦学习(Federated Learning)基础与实践
Evaporator Core
DeepSeek快速入门人工智能深度学习pythontornadodash
联邦学习(FederatedLearning,FL)是一种在分布式环境中训练模型的技术,允许多个设备或节点在不共享原始数据的情况下协同训练模型。这种方法在保护数据隐私的同时,能够利用分散的数据资源提升模型性能。DeepSeek提供了强大的工具和API,帮助我们高效地构建和训练联邦学习模型。本文将详细介绍如何使用DeepSeek进行联邦学习的基础与实践,并通过代码示例帮助你掌握这些技巧。1.联邦学习
- DeepSeek自监督学习基础与实践
Evaporator Core
Python开发经验DeepSeek快速入门深度学习学习机器学习人工智能
自监督学习(Self-SupervisedLearning,SSL)是一种利用未标注数据进行模型训练的技术。与传统的监督学习不同,自监督学习通过设计预训练任务(PretextTasks)从数据中自动生成标签,从而学习到有用的特征表示。这些特征表示可以用于下游任务(如分类、检测等),显著提升模型性能。DeepSeek提供了强大的工具和API,帮助我们高效地构建和训练自监督学习模型。本文将详细介绍如何
- 对股票分析时要注意哪些主要因素?
会飞的奇葩猪
股票 分析 云掌股吧
众所周知,对散户投资者来说,股票技术分析是应战股市的核心武器,想学好股票的技术分析一定要知道哪些是重点学习的,其实非常简单,我们只要记住三个要素:成交量、价格趋势、振荡指标。
一、成交量
大盘的成交量状态。成交量大说明市场的获利机会较多,成交量小说明市场的获利机会较少。当沪市的成交量超过150亿时是强市市场状态,运用技术找综合买点较准;
- 【Scala十八】视图界定与上下文界定
bit1129
scala
Context Bound,上下文界定,是Scala为隐式参数引入的一种语法糖,使得隐式转换的编码更加简洁。
隐式参数
首先引入一个泛型函数max,用于取a和b的最大值
def max[T](a: T, b: T) = {
if (a > b) a else b
}
因为T是未知类型,只有运行时才会代入真正的类型,因此调用a >
- C语言的分支——Object-C程序设计阅读有感
darkblue086
applec框架cocoa
自从1972年贝尔实验室Dennis Ritchie开发了C语言,C语言已经有了很多版本和实现,从Borland到microsoft还是GNU、Apple都提供了不同时代的多种选择,我们知道C语言是基于Thompson开发的B语言的,Object-C是以SmallTalk-80为基础的。和C++不同的是,Object C并不是C的超集,因为有很多特性与C是不同的。
Object-C程序设计这本书
- 去除浏览器对表单值的记忆
周凡杨
html记忆autocompleteform浏览
&n
- java的树形通讯录
g21121
java
最近用到企业通讯录,虽然以前也开发过,但是用的是jsf,拼成的树形,及其笨重和难维护。后来就想到直接生成json格式字符串,页面上也好展现。
// 首先取出每个部门的联系人
for (int i = 0; i < depList.size(); i++) {
List<Contacts> list = getContactList(depList.get(i
- Nginx安装部署
510888780
nginxlinux
Nginx ("engine x") 是一个高性能的 HTTP 和 反向代理 服务器,也是一个 IMAP/POP3/SMTP 代理服务器。 Nginx 是由 Igor Sysoev 为俄罗斯访问量第二的 Rambler.ru 站点开发的,第一个公开版本0.1.0发布于2004年10月4日。其将源代码以类BSD许可证的形式发布,因它的稳定性、丰富的功能集、示例配置文件和低系统资源
- java servelet异步处理请求
墙头上一根草
java异步返回servlet
servlet3.0以后支持异步处理请求,具体是使用AsyncContext ,包装httpservletRequest以及httpservletResponse具有异步的功能,
final AsyncContext ac = request.startAsync(request, response);
ac.s
- 我的spring学习笔记8-Spring中Bean的实例化
aijuans
Spring 3
在Spring中要实例化一个Bean有几种方法:
1、最常用的(普通方法)
<bean id="myBean" class="www.6e6.org.MyBean" />
使用这样方法,按Spring就会使用Bean的默认构造方法,也就是把没有参数的构造方法来建立Bean实例。
(有构造方法的下个文细说)
2、还
- 为Mysql创建最优的索引
annan211
mysql索引
索引对于良好的性能非常关键,尤其是当数据规模越来越大的时候,索引的对性能的影响越发重要。
索引经常会被误解甚至忽略,而且经常被糟糕的设计。
索引优化应该是对查询性能优化最有效的手段了,索引能够轻易将查询性能提高几个数量级,最优的索引会比
较好的索引性能要好2个数量级。
1 索引的类型
(1) B-Tree
不出意外,这里提到的索引都是指 B-
- 日期函数
百合不是茶
oraclesql日期函数查询
ORACLE日期时间函数大全
TO_DATE格式(以时间:2007-11-02 13:45:25为例)
Year:
yy two digits 两位年 显示值:07
yyy three digits 三位年 显示值:007
- 线程优先级
bijian1013
javathread多线程java多线程
多线程运行时需要定义线程运行的先后顺序。
线程优先级是用数字表示,数字越大线程优先级越高,取值在1到10,默认优先级为5。
实例:
package com.bijian.study;
/**
* 因为在代码段当中把线程B的优先级设置高于线程A,所以运行结果先执行线程B的run()方法后再执行线程A的run()方法
* 但在实际中,JAVA的优先级不准,强烈不建议用此方法来控制执
- 适配器模式和代理模式的区别
bijian1013
java设计模式
一.简介 适配器模式:适配器模式(英语:adapter pattern)有时候也称包装样式或者包装。将一个类的接口转接成用户所期待的。一个适配使得因接口不兼容而不能在一起工作的类工作在一起,做法是将类别自己的接口包裹在一个已存在的类中。 &nbs
- 【持久化框架MyBatis3三】MyBatis3 SQL映射配置文件
bit1129
Mybatis3
SQL映射配置文件一方面类似于Hibernate的映射配置文件,通过定义实体与关系表的列之间的对应关系。另一方面使用<select>,<insert>,<delete>,<update>元素定义增删改查的SQL语句,
这些元素包含三方面内容
1. 要执行的SQL语句
2. SQL语句的入参,比如查询条件
3. SQL语句的返回结果
- oracle大数据表复制备份个人经验
bitcarter
oracle大表备份大表数据复制
前提:
数据库仓库A(就拿oracle11g为例)中有两个用户user1和user2,现在有user1中有表ldm_table1,且表ldm_table1有数据5千万以上,ldm_table1中的数据是从其他库B(数据源)中抽取过来的,前期业务理解不够或者需求有变,数据有变动需要重新从B中抽取数据到A库表ldm_table1中。
- HTTP加速器varnish安装小记
ronin47
http varnish 加速
上午共享的那个varnish安装手册,个人看了下,有点不知所云,好吧~看来还是先安装玩玩!
苦逼公司服务器没法连外网,不能用什么wget或yum命令直接下载安装,每每看到别人博客贴出的在线安装代码时,总有一股羡慕嫉妒“恨”冒了出来。。。好吧,既然没法上外网,那只能麻烦点通过下载源码来编译安装了!
Varnish 3.0.4下载地址: http://repo.varnish-cache.org/
- java-73-输入一个字符串,输出该字符串中对称的子字符串的最大长度
bylijinnan
java
public class LongestSymmtricalLength {
/*
* Q75题目:输入一个字符串,输出该字符串中对称的子字符串的最大长度。
* 比如输入字符串“google”,由于该字符串里最长的对称子字符串是“goog”,因此输出4。
*/
public static void main(String[] args) {
Str
- 学习编程的一点感想
Cb123456
编程感想Gis
写点感想,总结一些,也顺便激励一些自己.现在就是复习阶段,也做做项目.
本专业是GIS专业,当初觉得本专业太水,靠这个会活不下去的,所以就报了培训班。学习的时候,进入状态很慢,而且当初进去的时候,已经上到Java高级阶段了,所以.....,呵呵,之后有点感觉了,不过,还是不好好写代码,还眼高手低的,有
- [能源与安全]美国与中国
comsci
能源
现在有一个局面:地球上的石油只剩下N桶,这些油只够让中国和美国这两个国家中的一个顺利过渡到宇宙时代,但是如果这两个国家为争夺这些石油而发生战争,其结果是两个国家都无法平稳过渡到宇宙时代。。。。而且在战争中,剩下的石油也会被快速消耗在战争中,结果是两败俱伤。。。
在这个大
- SEMI-JOIN执行计划突然变成HASH JOIN了 的原因分析
cwqcwqmax9
oracle
甲说:
A B两个表总数据量都很大,在百万以上。
idx1 idx2字段表示是索引字段
A B 两表上都有
col1字段表示普通字段
select xxx from A
where A.idx1 between mmm and nnn
and exists (select 1 from B where B.idx2 =
- SpringMVC-ajax返回值乱码解决方案
dashuaifu
AjaxspringMVCresponse中文乱码
SpringMVC-ajax返回值乱码解决方案
一:(自己总结,测试过可行)
ajax返回如果含有中文汉字,则使用:(如下例:)
@RequestMapping(value="/xxx.do") public @ResponseBody void getPunishReasonB
- Linux系统中查看日志的常用命令
dcj3sjt126com
OS
因为在日常的工作中,出问题的时候查看日志是每个管理员的习惯,作为初学者,为了以后的需要,我今天将下面这些查看命令共享给各位
cat
tail -f
日 志 文 件 说 明
/var/log/message 系统启动后的信息和错误日志,是Red Hat Linux中最常用的日志之一
/var/log/secure 与安全相关的日志信息
/var/log/maillog 与邮件相关的日志信
- [应用结构]应用
dcj3sjt126com
PHPyii2
应用主体
应用主体是管理 Yii 应用系统整体结构和生命周期的对象。 每个Yii应用系统只能包含一个应用主体,应用主体在 入口脚本中创建并能通过表达式 \Yii::$app 全局范围内访问。
补充: 当我们说"一个应用",它可能是一个应用主体对象,也可能是一个应用系统,是根据上下文来决定[译:中文为避免歧义,Application翻译为应
- assertThat用法
eksliang
JUnitassertThat
junit4.0 assertThat用法
一般匹配符1、assertThat( testedNumber, allOf( greaterThan(8), lessThan(16) ) );
注释: allOf匹配符表明如果接下来的所有条件必须都成立测试才通过,相当于“与”(&&)
2、assertThat( testedNumber, anyOf( g
- android点滴2
gundumw100
应用服务器android网络应用OSHTC
如何让Drawable绕着中心旋转?
Animation a = new RotateAnimation(0.0f, 360.0f,
Animation.RELATIVE_TO_SELF, 0.5f, Animation.RELATIVE_TO_SELF,0.5f);
a.setRepeatCount(-1);
a.setDuration(1000);
如何控制Andro
- 超简洁的CSS下拉菜单
ini
htmlWeb工作html5css
效果体验:http://hovertree.com/texiao/css/3.htmHTML文件:
<!DOCTYPE html>
<html xmlns="http://www.w3.org/1999/xhtml">
<head>
<title>简洁的HTML+CSS下拉菜单-HoverTree</title>
- kafka consumer防止数据丢失
kane_xie
kafkaoffset commit
kafka最初是被LinkedIn设计用来处理log的分布式消息系统,因此它的着眼点不在数据的安全性(log偶尔丢几条无所谓),换句话说kafka并不能完全保证数据不丢失。
尽管kafka官网声称能够保证at-least-once,但如果consumer进程数小于partition_num,这个结论不一定成立。
考虑这样一个case,partiton_num=2
- @Repository、@Service、@Controller 和 @Component
mhtbbx
DAOspringbeanprototype
@Repository、@Service、@Controller 和 @Component 将类标识为Bean
Spring 自 2.0 版本开始,陆续引入了一些注解用于简化 Spring 的开发。@Repository注解便属于最先引入的一批,它用于将数据访问层 (DAO 层 ) 的类标识为 Spring Bean。具体只需将该注解标注在 DAO类上即可。同时,为了让 Spring 能够扫描类
- java 多线程高并发读写控制 误区
qifeifei
java thread
先看一下下面的错误代码,对写加了synchronized控制,保证了写的安全,但是问题在哪里呢?
public class testTh7 {
private String data;
public String read(){
System.out.println(Thread.currentThread().getName() + "read data "
- mongodb replica set(副本集)设置步骤
tcrct
javamongodb
网上已经有一大堆的设置步骤的了,根据我遇到的问题,整理一下,如下:
首先先去下载一个mongodb最新版,目前最新版应该是2.6
cd /usr/local/bin
wget http://fastdl.mongodb.org/linux/mongodb-linux-x86_64-2.6.0.tgz
tar -zxvf mongodb-linux-x86_64-2.6.0.t
- rust学习笔记
wudixiaotie
学习笔记
1.rust里绑定变量是let,默认绑定了的变量是不可更改的,所以如果想让变量可变就要加上mut。
let x = 1; let mut y = 2;
2.match 相当于erlang中的case,但是case的每一项后都是分号,但是rust的match却是逗号。
3.match 的每一项最后都要加逗号,但是最后一项不加也不会报错,所有结尾加逗号的用法都是类似。
4.每个语句结尾都要加分