删去多余的演示部分,解决了图像无法显示的问题
import torch
from d2l import torch as d2l
import matplotlib.pyplot as plt
from torchvision import transforms
import torchvision # 计算机视觉相关库
from torch.utils import data
from IPython import display
def get_dataloader_workers(): #@save
"""使用4个进程来读取数据"""
return 4 # 并行
def load_data_fashion_mnist(batch_size, resize=None): #@save
"""下载Fashion-MNIST数据集,然后将其加载到内存中"""
trans = [transforms.ToTensor()]
if resize:
trans.insert(0, transforms.Resize(resize))
#transforms.Resize:调整PILImage对象的尺寸。transforms.Resize([h, w])或transforms.Resize(x)等比例缩放
trans = transforms.Compose(trans) # 串联多个图片变换的操作
mnist_train = torchvision.datasets.FashionMNIST(
root="D:/code/动手学深度学习/pytorch/data", train=True, transform=trans, download=False)
mnist_test = torchvision.datasets.FashionMNIST(
root="D:/code/动手学深度学习/pytorch/data", train=False, transform=trans, download=False)
return (data.DataLoader(mnist_train, batch_size, shuffle=True,
num_workers=get_dataloader_workers()),
data.DataLoader(mnist_test, batch_size, shuffle=False,
num_workers=get_dataloader_workers()))
# 定义softmax
def softmax(X):
X_exp = torch.exp(X)
return X_exp / X_exp.sum(axis=1, keepdim=True)
def net(X):
return softmax(torch.matmul(X.reshape((-1, W.shape[0])), W) + b)
# 交叉熵损失函数
def cross_entropy(y_hat, y):
return -torch.log(y_hat[range(len(y_hat)), y])
# 精度
def accuracy(y_hat, y):
if len(y_hat.shape) > 1 and y_hat.shape[1] > 1:
y_hat = y_hat.argmax(axis= 1)
cmp = y_hat == y
return float(cmp.type(y.dtype).sum())
# 为什么不在accuracy中除以len(y):accuracy函数是一个batch一个batch求的,
# 因为如果样本数不是batch整数倍,
# 最后的batch_size可能与前面不同,所以要求出数量后累计求精度
#
def evaluate_accuracy(net, data_iter): #@save
if isinstance(net, torch.nn.Module):
net.eval()
metric = Accumulater(2) # 累加
with torch.no_grad():
for X, y in data_iter:
metric.add(accuracy(net(X), y), y.numel())
return metric[0]/metric[1]
class Accumulater: #@save
def __init__(self, n):
self.data = [0.0] *n
def add(self, *args):
self.data = [a + float(b) for a,b in zip(self.data, args)]
def reset(self):
self.data = [0.0] * len(self.data)
def __getitem__(self, idx):
return self.data[idx]
# 训练一轮
def train_epoch_ch3(net, train_iter, loss, updater):
if isinstance(net, torch.nn.Module):
net.train()
metric = Accumulater(3)
for X, y in train_iter:
y_hat = net(X)
l = loss(y_hat, y)
if isinstance(updater, torch.optim.Optimizer): # 使用torch内置优化器
updater.zero_grad()
l.mean().backward()
updater.step()
else:
l.sum().backward()
updater(X.shape[0])
metric.add(float(l.sum()), accuracy(y_hat, y), y.numel())
return metric[0]/metric[2], metric[1]/metric[2]
# 绘图
class Animator: #@save
"""在动画中绘制数据"""
def __init__(self, xlabel=None, ylabel=None, legend=None, xlim=None,
ylim=None, xscale='linear', yscale='linear',
fmts=('-', 'm--', 'g-.', 'r:'), nrows=1, ncols=1,
figsize=(3.5, 2.5)):
# 增量地绘制多条线
if legend is None:
legend = []
d2l.use_svg_display()
self.fig, self.axes = d2l.plt.subplots(nrows, ncols, figsize=figsize)
if nrows * ncols == 1:
self.axes = [self.axes, ]
# 使用lambda函数捕获参数
self.config_axes = lambda: d2l.set_axes(
self.axes[0], xlabel, ylabel, xlim, ylim, xscale, yscale, legend)
self.X, self.Y, self.fmts = None, None, fmts
def add(self, x, y):
# 向图表中添加多个数据点
if not hasattr(y, "__len__"):
y = [y]
n = len(y)
if not hasattr(x, "__len__"):
x = [x] * n
if not self.X:
self.X = [[] for _ in range(n)]
if not self.Y:
self.Y = [[] for _ in range(n)]
for i, (a, b) in enumerate(zip(x, y)):
if a is not None and b is not None:
self.X[i].append(a)
self.Y[i].append(b)
self.axes[0].cla()
for x, y, fmt in zip(self.X, self.Y, self.fmts):
self.axes[0].plot(x, y, fmt)
self.config_axes()
display.display(self.fig)
display.clear_output(wait=True)
plt.pause(0.001)
# 训练全部
def train_ch3(net, train_iter, test_iter, loss, num_epochs, updater):
animator = Animator(xlabel='epoch', xlim=[1, num_epochs], ylim=[0.3, 0.9], # 可视化
legend=['train loss', 'train acc', 'test acc'])
for epoch in range(num_epochs):
train_metrics = train_epoch_ch3(net, train_iter, loss, updater)
test_acc = evaluate_accuracy(net, test_iter)
animator.add(epoch + 1, train_metrics + (test_acc,))
train_loss, train_acc = train_metrics
assert train_loss < 0.7, train_loss
assert train_acc <=1 and train_acc > 0.7, train_acc
assert test_acc <= 1 and test_acc > 0.7, test_acc
def updater(batch_size):
return d2l.sgd([W, b], lr, batch_size)
# 预测
def predict_ch3(net, test_iter, n = 6):
for X, y in test_iter:
break
trues = d2l.get_fashion_mnist_labels(y)
preds = d2l.get_fashion_mnist_labels(net(X).argmax(axis= 1))
titles = [true + '\n' + pred for true, pred in zip(trues, preds)]
d2l.show_images(X[0:n].reshape((n,28,28)), 1, n, titles = titles[0:n])
if __name__=='__main__':
# 初始化模型参数
batch_size = 256
train_iter, test_iter = load_data_fashion_mnist(batch_size)
num_inputs = 784
num_outputs = 10
W = torch.normal(0, 0.01, size=(num_inputs, num_outputs), requires_grad=True)
b = torch.zeros(num_outputs, requires_grad=True)
lr = 0.1
num_epochs = 10
train_ch3(net, train_iter, test_iter, cross_entropy, num_epochs, updater)
plt.show()
predict_ch3(net, test_iter)
plt.show()
import torch
from torch import nn
from d2l import torch as d2l
import matplotlib.pyplot as plt
from torchvision import transforms
import torchvision # 计算机视觉相关库
from torch.utils import data
def get_dataloader_workers(): #@save
"""使用4个进程来读取数据,可以不写"""
return 4 # 并行
# 重写load_data_fashion_mnist函数,更改读取图片的地址
def load_data_fashion_mnist(batch_size, resize=None): #@save
"""下载Fashion-MNIST数据集,然后将其加载到内存中"""
trans = [transforms.ToTensor()]
if resize:
trans.insert(0, transforms.Resize(resize))
#transforms.Resize:调整PILImage对象的尺寸。transforms.Resize([h, w])或transforms.Resize(x)等比例缩放
trans = transforms.Compose(trans) # 串联多个图片变换的操作
mnist_train = torchvision.datasets.FashionMNIST(
root="D:/code/动手学深度学习/pytorch/data", train=True, transform=trans, download=False)
mnist_test = torchvision.datasets.FashionMNIST(
root="D:/code/动手学深度学习/pytorch/data", train=False, transform=trans, download=False)
return (data.DataLoader(mnist_train, batch_size, shuffle=True,
num_workers=get_dataloader_workers()),
data.DataLoader(mnist_test, batch_size, shuffle=False,
num_workers=get_dataloader_workers()))
if __name__=='__main__':
batch_size = 256
train_iter, test_iter = load_data_fashion_mnist(batch_size)
# 初始化模型参数
net = nn.Sequential(nn.Flatten(), nn.Linear(784, 10)) # 线性层之前使用展平层调整输入的形状
def init_weights(m):
if type(m) == nn.Linear:
nn.init.normal_(m.weight, std=0.1)
net.apply(init_weights)
# 损失
loss = nn.CrossEntropyLoss(reduction='none')
# 优化算法
trainer = torch.optim.SGD(net.parameters(), lr=0.1)
# 训练
num_epoch = 10
d2l.train_ch3(net, train_iter, test_iter, loss, num_epoch, trainer)
plt.show()
# 预测
d2l.predict_ch3(net, test_iter)
plt.show()
def get_dataloader_workers():
return 0
if __name__=='__main__':
(除定义函数/类之外的内容)问题描述:使用pycharm画图时弹出的图片窗口显示未响应
,或报错
error: failed to send plot to http://127.0.0.1:63342
解决方法:
问题描述:无法像jupyter中一样每运行一个epoch显示一段新的图像
解决方法:
重写Animato
中的add
函数,在最后加入plt.pause(0.001)
,或直接在d2l.torch中更改该函数
问题描述:文件地址问题
解决方法:重写load_data_fashion_mnist函数
或直接在d2l.torch中更改该函数,改为保存数据的绝对地址
在运行训练函数和预测函数后分别加
plt.show()