帮学弟训练配的,编译踩了些坑故记录一下。
git clone https://github.com/pjreddie/darknet
GPU=1 #如果使用GPU设置为1,CPU设置为0
CUDNN=0 #如果使用CUDNN设置为1,否则为0
OPENCV=0 #如果调用摄像头,还需要设置OPENCV为1,否则为0
OPENMP=0 #如果使用OPENMP设置为1,否则为0
DEBUG=0 #如果使用DEBUG设置为1,否则为0
make
尝试CUDNN=1的时候报错[obj/convolutional_layer.o] Error 1
,先根据博客编译darknet报错:[obj/convolutional_layer.o] Error 1 或者[obj/convolutional_kernels.o] Error 1尝试修改NVCC和其他一切和cuda有关的路径,但是还是报错[obj/convolutional_kernels.o] Error 1]
。
这时候参考这篇博客’obj/convolutional_kernels.o’ failed make: *** [obj/convolutional_kernels.o] Error 1配置etc/profile
,但是仍然报同样的错误。
这时候注意到这个错误上面还有一句nvcc fatal : Unsupported gpu architecture ‘compute_30‘
,于是参考这篇博客nvcc fatal : Unsupported gpu architecture ‘compute_30‘注释掉-gencode arch=compute_30,code=sm_30
后编译通过
---darknet
|---mydataset
|---Annotations
|---JPEGImages
|---ImageSets
|---Main
|---test.py
|---voc_label.py
运行test.py,在目录ImageSets/Main下生成test.txt,train.txt,trainval.txt,val.txt
再运行voc_label.py,在目录mydataset下生成文件夹labels以及mydataset_train.txt,mydataset_trainval.txt
voc.data
,yolov3-tiny.cfg
classes= 1
train = /home/{path}/darknet/mydataset/mydataset_train.txt
valid = /home/{path}/darknet/mydataset/mydataset_trainval.txt
names = data/voc.names
backup = backup
[convolutional]
size=1
stride=1
pad=1
filters=18 #(classes+5)*3
activation=linear
[yolo]
mask = 3,4,5
anchors = 10,14, 23,27, 37,58, 81,82, 135,169, 344,319
classes=1 #1 class
num=6
jitter=.3
ignore_thresh = .7
truth_thresh = 1
random=1
修改另外一个也是同理
[convolutional]
size=1
stride=1
pad=1
filters=18
activation=linear
[yolo]
mask = 0,1,2
anchors = 10,14, 23,27, 37,58, 81,82, 135,169, 344,319
classes=1
num=6
jitter=.3
ignore_thresh = .7
truth_thresh = 1
random=1
训练部分
[net]
# Testing 因为是训练所以要把test的部分给注释掉,
# batch=1
# subdivisions=1
# Training
batch=32 #根据电脑配置决定,配置低就往小调
subdivisions=16 #也是根据配置决定,配置低往大调
width=416
height=416
channels=3
momentum=0.9
decay=0.0005
angle=0
saturation = 1.5
exposure = 1.5
hue=.1
learning_rate=0.001
burn_in=1000
max_batches = 10000 #最大迭代次数
policy=steps
steps=8000,9000 #一般来说是最大迭代次数的80%和90%
scales=.1,.1
参数具体含义可以参考这篇博客yolo v3配置文件说明模型配置文件——cfg/yolov3-voc.cfg
2. 修改data/voc.names
修改为类别名称,比如我这里为标签sidewalk
首先确保终端当前目录为darknet
wget https://pjreddie.com/media/files/yolov3-tiny.weights
./darknet partial cfg/yolov3-tiny.cfg yolov3-tiny.weights yolov3-tiny.conv.15 15
sudo ./darknet detector train cfg/voc.data cfg/yolov3-tiny.cfg yolov3-tiny.conv.15 -gpus 0
代码自动每隔100轮保存一次权重文件(到900轮),以及保存第1w轮和最后一轮迭代的权重文件。
以最后一轮终端输出的信息为例:
10000: 0.093652, 0.089722 avg, 0.000010 rate, 1.899265 seconds, 320000 images
上面数据只需要关心前三个,依次表示迭代次数、loss、avg loss,一般来说loss越小越好
其他参数详细可以参考这篇博客目标检测:YOLOv3: 训练自己的数据
./darknet detector test cfg/voc.data cfg/yolov3-tiny.cfg backup/yolov3-tiny_final.weights data/sidewalk.jpg
代码
test.py
import os
import random
trainval_percent = 0.1
train_percent = 0.9
xmlfilepath = 'Annotations'
txtsavepath = 'ImageSets\Main'
total_xml = os.listdir(xmlfilepath)
num = len(total_xml)
list = range(num)
tv = int(num * trainval_percent)
tr = int(tv * train_percent)
trainval = random.sample(list, tv)
train = random.sample(trainval, tr)
ftrainval = open('ImageSets/Main/trainval.txt', 'w')
ftest = open('ImageSets/Main/test.txt', 'w')
ftrain = open('ImageSets/Main/train.txt', 'w')
fval = open('ImageSets/Main/val.txt', 'w')
for i in list:
name = total_xml[i][:-4] + '\n'
if i in trainval:
ftrainval.write(name)
if i in train:
ftest.write(name)
else:
fval.write(name)
else:
ftrain.write(name)
ftrainval.close()
ftrain.close()
fval.close()
ftest.close()
voc_label.py
import xml.etree.ElementTree as ET
import pickle
import os
from os import listdir, getcwd
from os.path import join
#源代码sets=[('2012', 'train'), ('2012', 'val'), ('2007', 'train'), ('2007', 'val'), ('2007', 'test')]
sets=[('mydataset', 'train'),('mydataset', 'trainval')] # 改成自己建立的myData
classes = ["sidewalk"] # 改成自己的类别
def convert(size, box):
dw = 1./(size[0])
dh = 1./(size[1])
x = (box[0] + box[1])/2.0 - 1
y = (box[2] + box[3])/2.0 - 1
w = box[1] - box[0]
h = box[3] - box[2]
x = x*dw
w = w*dw
y = y*dh
h = h*dh
return (x,y,w,h)
def convert_annotation(year, image_id):
in_file = open('mydataset/Annotations/%s.xml'%(image_id)) # 源代码VOCdevkit/VOC%s/Annotations/%s.xml
out_file = open('mydataset/labels/%s.txt'%(image_id), 'w') # 源代码VOCdevkit/VOC%s/labels/%s.txt
tree=ET.parse(in_file)
root = tree.getroot()
size = root.find('size')
w = int(size.find('width').text)
h = int(size.find('height').text)
for obj in root.iter('object'):
difficult = obj.find('difficult').text
cls = obj.find('name').text
if cls not in classes or int(difficult)==1:
continue
cls_id = classes.index(cls)
xmlbox = obj.find('bndbox')
b = (float(xmlbox.find('xmin').text), float(xmlbox.find('xmax').text), float(xmlbox.find('ymin').text), float(xmlbox.find('ymax').text))
bb = convert((w,h), b)
out_file.write(str(cls_id) + " " + " ".join([str(a) for a in bb]) + '\n')
wd = getcwd()
for year, image_set in sets:
if not os.path.exists('mydataset/labels/'): # 改成自己建立的myData
os.makedirs('mydataset/labels/')
image_ids = open('mydataset/ImageSets/Main/%s.txt'%(image_set)).read().strip().split()
list_file = open('mydataset/%s_%s.txt'%(year, image_set), 'w')
for image_id in image_ids:
list_file.write('%s/mydataset/JPEGImages/%s.jpg\n'%(wd, image_id))
convert_annotation(year, image_id)
list_file.close()