Class文件结构及字节码指令

JVM 的无关性

与平台无关性是建立在操作系统上,虚拟机厂商提供了许多可以运行在各种不同平台的虚拟机,它们都可以载入和执行字节码,从而实现程序的“一次编写,到处运行”

各种不同平台的虚拟机与所有平台都统一使用的程序存储格式——字节码(ByteCode)是构成平台无关性的基石,也是语言无关性的基础。Java 虚拟机不和包括 Java 在内的任何语言绑定,它只与“Class 文件”这种特定的二进制文件格式所关联,Class 文件中包含了 Java 虚拟机指令集和符号表以及若干其他辅助信息。
Class文件结构及字节码指令_第1张图片

Class 类文件

任何一个 Class 文件都对应着唯一一个类或接口的定义信息,但反过来说,Class 文件实际上它并不一定以磁盘文件的形式存在(比如可以动态生成、或者直接送入类加载器中)。
Class 文件是一组以 8 位字节为基础单位的二进制流
Class文件结构及字节码指令_第2张图片

字节码指令查看工具

Sublime

查看 16 进制的编辑器

javap

javap 是 JDK 自带的反解析工具。它的作用是将 .class 字节码文件解析成可读的文件格式。在使用 javap 时我一般会添加 -v 参数,尽量多打印一些信息。同时,我也会使用 -p 参数,打印一些私有的字段和方法。

jclasslib

如果你不太习惯使用命令行的操作,还可以使用 jclasslib,jclasslib 是一个图形化的工具,能够更加直观的查看字节码中的内容。它还分门别类的对类中的各个部分进行了整理,非常的人性化。同时,它还提供了 Idea 的插件,你可以从 plugins 中搜索到它。
jclasslib 的下载地址:https://github.com/ingokegel/jclasslib

以下演示一段代码用工具查看二进制流信息

public class ByteCode {
    public ByteCode(){
    }
}

Class文件结构及字节码指令_第3张图片
整个 class 文件的格式就是一个二进制的字节流。
各个数据项目严格按照顺序紧凑地排列在 Class 文件之中,中间没有添加任何分隔符,这使得整个 Class 文件中存储的内容几乎全部是程序运行的必要数据,没有空隙存在。Class 文件格式采用一种类似于 C 语言结构体的伪结构来存储数据,这种伪结构中只有两种数据类型:无符号数和表

无符号数属于基本的数据类型,以 u1、u2、u4、u8 来分别代表 1 个字节(一个字节是由两位 16 进制数组成)、2 个字节、4 个字节和 8 个字节的无符号数,无符号数可以用来描述数字、索引引用、数量值或者按照 UTF-8 编码构成字符串值。

是由多个无符号数或者其他表作为数据项构成的复合数据类型,所有表都习惯性地以“_info”结尾。表用于描述有层次关系的复合结构的数据,整个Class 文件本质上就是一张表。
Class文件结构及字节码指令_第4张图片

Class 文件格式详解

Class 的结构不像 XML 等描述语言,由于它没有任何分隔符号,所以在其中的数据项,无论是顺序还是数量,都是被严格限定的,哪个字节代表什么含义,长度是多少,先后顺序如何,都不允许改变。

按顺序包括:

与 魔数与 Class 文件的版本每个 Class 文件的头 4 个字节称为魔数(Magic Number),它的唯一作用是确定这个文件是否为一个能被虚拟机接受的 Class 文件。使用魔数而不是扩展名来进行识别主要是基于安全方面的考虑,因为文件扩展名可以随意地改动。文件格式的制定者可以自由地选择魔数值,只要这个魔数值还没有被广泛采用过同时又不会引起混淆即可。紧接着魔数的 4 个字节存储的是 Class 文件的版本号:第 5 和第 6 个字节是次版本号(MinorVersion),第 7 和第 8 个字节是主版本号(Major Version)。Java 的版本号是从 45 开始的,JDK 1.1 之后的每个 JDK 大版本发布主版本号向上加 1 高版本的 JDK 能向下兼容以前版本的 Class 文件,但不能运行以后版本的 Class 文件,即使文件格式并未发生任何变化,虚拟机也必须拒绝执行超过其版本号的 Class 文件。代表 JDK1.8(16 进制的 34,换成 10 进制就是 52)

常量池

常量池中常量的数量是不固定的,所以在常量池的入口需要放置一项 u2 类型的数据,代表常量池容量计数(constant_pool_count)。与 Java 中语言习惯不一样的是,这个容量计数是从 1 而不是 0 开始的 。常量池中主要存放两大类常量:字面量(Literal)和符号引用(Symbolic References)
Class文件结构及字节码指令_第5张图片
Class文件结构及字节码指令_第6张图片
Class文件结构及字节码指令_第7张图片

字面量比较接近于 Java 语言层面的常量概念,如文本字符串、声明为 final 的常量值等。而符号引用则属于编译原理方面的概念,包括了下面三类常量:
类和接口的全限定名(Fully Qualified Name)、
字段的名称和描述符(Descriptor)、
方法的名称和描述符
我们就可以使用更加直观的工具 jclasslib,来查看字节码中的具体内容了

访问标志

用于识别一些类或者接口层次的访问信息,包括:这个 Class 是类还是接口;是否定义为 public 类型;是否定义为 abstract 类型;如果是类的话,是否被声明为 final 等

类索引、父类索引与接口索引集合

这三项数据来确定这个类的继承关系。类索引用于确定这个类的全限定名,父类索引用于确定这个类的父类的全限定名。由于 Java 语言不允许多重继承,所以父类索引只有一个,除了 java.lang.Object 之外,所有的 Java 类都有父类,因此除了 java.lang.Object 外,所有 Java 类的父类索引都不为 0。接口索引集合就用来描述这个类实现了哪些接口,这些被实现的接口将按 implements 语句(如果这个类本身是一个接口,则应当是 extends 语句)后的接口顺序从左到右排列在接口索引集合中

字段表集合

描述接口或者类中声明的变量。字段(field)包括类级变量以及实例级变量。而字段叫什么名字、字段被定义为什么数据类型,这些都是无法固定的,只能引用常量池中的常量来描述。字段表集合中不会列出从超类或者父接口中继承而来的字段,但有可能列出原本 Java 代码之中不存在的字段,譬如在内部类中为了保持对外部类的访问性,会自动添加指向外部类实例的字段。

方法表集合

描述了方法的定义,但是方法里的 Java 代码,经过编译器编译成字节码指令后,存放在属性表集合中的方法属性表集合中一个名为“Code”的属性里面。与字段表集合相类似的,如果父类方法在子类中没有被重写(Override),方法表集合中就不会出现来自父类的方法信息。但同样的,有可能会出现由编译器自动添加的方法,最典型的便是类构造器“<clinit>”方法和实例构造器“<init>”

属性表集合

存储 Class 文件、字段表、方法表都自己的属性表集合,以用于描述某些场景专有的信息。如方法的代码就存储在 Code 属性表中。

字节码指令 ( 不重要 )

字节码指令属于方法表中的内容:
Class文件结构及字节码指令_第8张图片
也可以用javap命令查看。属实枯燥无味,了解一下就行了。

加载和存储指令

用于将数据在栈帧中的局部变量表和操作数栈之间来回传输,这类指令包括如下内容。将一个局部变量加载到操作栈:iload、iload_<n>、lload、lload_<n>、fload、fload_<n>、dload、dload_<n>、aload、aload_<n>。将一个数值从操作数栈存储到局部变量表:istore、istore_<n>、lstore、lstore_<n>、fstore、fstore_<n>、dstore、dstore_<n>、astore、astore_<n>。将一个常量加载到操作数栈:bipush、sipush、ldc、ldc_w、ldc2_w、aconst_null、iconst_m1、iconst_<i>、lconst_<l>、fconst_<f>、dconst_<d>。
扩充局部变量表的访问索引的指令:wide。

运算或算术指令

用于对两个操作数栈上的值进行某种特定运算,并把结果重新存入到操作栈顶。
加法指令:iadd、ladd、fadd、dadd。
减法指令:isub、lsub、fsub、dsub。
乘法指令:imul、lmul、fmul、dmul 等等

类型转换指令

可以将两种不同的数值类型进行相互转换,
Java 虚拟机直接支持以下数值类型的宽化类型转换(即小范围类型向大范围类型的安全转换):
int 类型到 long、float 或者 double 类型。
long 类型到 float、double 类型。
float 类型到 double 类型。
处理窄化类型转换(Narrowing Numeric Conversions)时,必须显式地使用转换指令来完成,这些转换指令包括:i2b、i2c、i2s、l2i、f2i、f2l、d2i、d2l 和d2f。

创建类实例的指令

new。

创建数组的指令

newarray、anewarray、multianewarray。

访问字段指令

getfield、putfield、getstatic、putstatic。

数组存取相关指令

把一个数组元素加载到操作数栈的指令:baload、caload、saload、iaload、laload、faload、daload、aaload。
将一个操作数栈的值存储到数组元素中的指令:bastore、castore、sastore、iastore、fastore、dastore、aastore。
取数组长度的指令:arraylength。

检查类实例类型的指令

instanceof、checkcast。

操作数栈管理指令

如同操作一个普通数据结构中的堆栈那样,Java 虚拟机提供了一些用于直接操作操作数栈的指令,包括:将操作数栈的栈顶一个或两个元素出栈:pop、pop2。
复制栈顶一个或两个数值并将复制值或双份的复制值重新压入栈顶:dup、dup2、dup_x1、dup2_x1、dup_x2、dup2_x2。
将栈最顶端的两个数值互换:swap。

控制转移指令

控制转移指令可以让 Java 虚拟机有条件或无条件地从指定的位置指令而不是控制转移指令的下一条指令继续执行程序,从概念模型上理解,可以认为控制转移指令就是在有条件或无条件地修改 PC 寄存器的值。控制转移指令如下。条件分支:ifeq、iflt、ifle、ifne、ifgt、ifge、ifnull、ifnonnull、if_icmpeq、if_icmpne、if_icmplt、if_icmpgt、if_icmple、if_icmpge、if_acmpeq 和 if_acmpne。
复合条件分支:tableswitch、lookupswitch。
无条件分支:goto、goto_w、jsr、jsr_w、ret。

方法调用指令

invokevirtual 指令用于调用对象的实例方法,根据对象的实际类型进行分派(虚方法分派),这也是 Java 语言中最常见的方法分派方式。
invokeinterface 指令用于调用接口方法,它会在运行时搜索一个实现了这个接口方法的对象,找出适合的方法进行调用。
invokespecial 指令用于调用一些需要特殊处理的实例方法,包括实例初始化方法、私有方法和父类方法。
invokestatic 指令用于调用类方法(static 方法)。
invokedynamic 指令用于在运行时动态解析出调用点限定符所引用的方法,并执行该方法,前面 4 条调用指令的分派逻辑都固化在 Java 虚拟机内部,而invokedynamic 指令的分派逻辑是由用户所设定的引导方法决定的。方法调用指令与数据类型无关。
方法返回指令是根据返回值的类型区分的,包括 ireturn(当返回值是 boolean、byte、char、short 和 int 类型时使用)、lreturn、freturn、dreturn 和 areturn,另外还有一条 return 指令供声明为 void 的方法、实例初始化方法以及类和接口的类初始化方法使用。

异常处理指令

在 Java 程序中显式抛出异常的操作(throw 语句)都由 athrow 指令来实现
Class文件结构及字节码指令_第9张图片

同步指令

有 monitorenter 和 monitorexit 两条指令来支持 synchronized 关键字的语义
Class文件结构及字节码指令_第10张图片
字节码指令—— 异常处理
每个时刻正在执行的当前方法就是虚拟机栈顶的栈桢。方法的执行就对应着栈帧在虚拟机栈中入栈和出栈的过程。
当一个方法执行完,要返回,那么有两种情况,一种是正常,另外一种是异常。
如果你熟悉 Java 语言,Error 和 RuntimeException 是非检查型异常(Unchecked Exception),也就是不需要 catch 语句去捕获的异常;而其他异常,则需要程序员手动去处理。

字节码指令—— 装箱拆箱

装箱拆箱
Java 中有 8 种基本类型,但鉴于 Java 面向对象的特点,它们同样有着对应的 8 个包装类型,比如 int 和 Integer,包装类型的值可以为 null(基本类型没有 null 值,而数据库的表中普遍存在 null 值。 所以实体类中所有属性均应采用封装类型),很多时候,它们都能够相互赋值。

public class Box {
    public Integer cal() {
        Integer a = 1000;
        int b = a * 10;
        return b;
    }
}

Class文件结构及字节码指令_第11张图片
通过观察字节码,我们发现:
1、在进行乘法运算的时候,调用了 Integer.intValue 方法来获取基本类型的值。
2、赋值操作使用的是 Integer.valueOf 方法。
3、在方法返回的时候,再次使用了 Integer.valueOf 方法对结果进行了包装。
这就是 Java 中的自动装箱拆箱的底层实现。

IntegerCache
但这里有一个陷阱问题,我们继续跟踪 Integer.valueOf 方法
Class文件结构及字节码指令_第12张图片
Class文件结构及字节码指令_第13张图片
这个 IntegerCache,缓存了 low 和 high 之间的 Integer 对象
一般情况下,缓存是的-128 到 127 之间的值,但是可以通过 -XX:AutoBoxCacheMax 来修改上限。
下面是一道经典的面试题,请考虑一下运行代码后,会输出什么结果?


public class BoxCache {
    public static void main(String[] args) {
        Integer n1 = 123; //new一东西
        Integer n2 = 123;
        Integer n3 = 128;
        Integer n4 = 128;

        System.out.println(n1 == n2);
        System.out.println(n3 == n4);
    }
}

一般情况下是是 true,false 因为缓存的原因。(在缓存范围内的值,返回的是同一个缓存值,不在的话,每次都是 new 出来的)
当我加上 VM 参数 -XX:AutoBoxCacheMax=256 执行时,结果是 true,ture,扩大缓存范围,第二个为 true 原因就在于此。

数组创建
新建数组的代码,被编译成了 newarray 指令。
数组里的初始内容,被顺序编译成了一系列指令放入:
sipush 将一个短整型常量值推送至栈顶;
iastore 将栈顶 int 型数值存入指定数组的指定索引位置
为了支持多种类型,从操作数栈存储到数组,有更多的指令:bastore、castore、sastore、iastore、lastore、fastore、dastore、aastore。

字节码指令——foreach
无论是 Java 的数组,还是 List,都可以使用 foreach 语句进行遍历,虽然在语言层面它们的表现形式是一致的,但实际实现的方法并不同。

public class ForDemo {
    void loop(int[] arr) {
        for (int i : arr) {
            System.out.println(i);
        }
    }
    void loop(List<Integer> arr) {
        for (int i : arr) {
            System.out.println(i);
        }
    }
}

数组:它将代码解释成了传统的变量方式,即 for(int i;i List 的它实际是把 list 对象进行迭代并遍历的,在循环中,使用了 Iterator.next() 方法。
使用 jd-gui 等反编译工具,可以看到实际生成的代码:

Class文件结构及字节码指令_第14张图片
字节码指令总结
Java 的特性非常多,这里不再一一列出,但都可以使用这种简单的方式,从字节码层面分析了它的原理,一窥究竟。比如异常的处理、finally 块的执行顺序;以及隐藏的装箱拆箱和 foreach 语法糖的底层实现。还有字节码指令,可能有几千行,看起来很吓人,但执行速度几乎都是纳秒级别的。Java 的无数框架,包括 JDK,也不会为了优化这种性能对代码进行限制。了解其原理,但不要舍本逐末,比如减少一次 Java 线程的上下文切换,就比你优化几千个装箱拆箱动作,速度来的更快一些。学习class字节码指令确实很枯燥,但是反编译通过指令会更加清晰jvm底层是如果走的,了解一下也是可以的。加油,后浪!

你可能感兴趣的:(jvm,jvm)