- Flink-Hadoop实战项目
Dylan_muc
hadoophdfsflink
项目说明文档1.项目概述1.1项目简介本项目是一个基于ApacheFlink的大数据流处理平台,专门用于处理铁路系统的票务和车次信息数据。系统包含两个核心流处理作业:文件处理作业和数据合并作业,采用定时调度机制,支持Kerberos安全认证,实现从文件读取到数据仓库存储的完整数据处理链路。1.2技术栈流处理引擎:ApacheFlink1.18.1存储系统:HDFS(Hadoop分布式文件系统)数据
- Flink:处理有界流数据的wordcount
小易学编程
flink大数据
数据源:helloworldhelloflinkhelloscala有界流:packagechapter02importorg.apache.flink.streaming.api.scala._/***ClassName:BoundedStreamWordCount*Package:chapter02*Description:**@Author小易日拱一卒*@Create2025-06-272:
- 10.jobManager初始化流程
JobManager初始化流程1.找到入口类StandaloneSessionClusterEntrypoint该类位于Flink源码的以下路径中:flink-runtime/src/main/java/org/apache/flink/runtime/entrypoint/StandaloneSessionClusterEntrypoint.java2.查看main方法/**Entrypoint
- 绝佳组合 SpringBoot + Lua + Redis = 王炸!
Java精选面试题(微信小程序):5000+道面试题和选择题,真实面经,简历模版,包含Java基础、并发、JVM、线程、MQ系列、Redis、Spring系列、Elasticsearch、Docker、K8s、Flink、Spark、架构设计、大厂真题等,在线随时刷题!前言曾经有一位魔术师,他擅长将SpringBoot和Redis这两个强大的工具结合成一种令人惊叹的组合。他的魔法武器是Redis的
- 聊聊flink的RpcService
go4it
序本文主要研究一下flink的RpcServiceRpcServiceflink-release-1.7.2/flink-runtime/src/main/java/org/apache/flink/runtime/rpc/RpcService.javapublicinterfaceRpcService{StringgetAddress();intgetPort();CompletableFutu
- ARTS-第七周
梧上擎天
Algorithm一、用链表和二叉树实现Set集合GitHub地址二、散列表散列表就是使用数组下标随机访问时候复杂度为O(1)的特性,当我们按照键值查找元素时,通过散列函数将key转化为下标然后进行访问,当有大量散列冲突时会退化为O(n)的时间复杂度。解决散列冲突的方法:开放寻址法和链表法ReviewFlink动态表概念原文地址流和表为什么可以相互转换呢?我们都知道传统Mysql的主从复制是通过b
- 如何解决一个flink on yarn集群上已经跑了一个job,再提交第二个job的时候,task报java heap size oom的问题
fzip
Flinkflinkjava大数据
在FlinkonYARN集群中提交第二个Job时出现Task的JavaHeapSizeOOM(内存溢出),核心原因是集群资源不足(第一个Job已占用大量资源,第二个Job分配的内存不够)或Job资源配置不合理(单个Job申请资源过多,或内存参数设置与实际需求不匹配)。解决需从“资源排查”“Job配置优化”“集群资源扩容”三个维度入手,具体步骤如下:一、先排查核心原因:确认资源占用与配置是否匹配1.
- flink sql读hive catalog数据,将string类型的时间戳数据排序后写入kafka,如何保障写入kafka的数据是有序的
fzip
Flinkflinksqlhive
在FlinkSQL中,要确保从Hive读取的STRING类型时间戳数据排序后有序写入Kafka,需要结合批处理模式、时间类型转换、单分区写入和Kafka生产者配置。以下是完整解决方案:一、核心解决方案1.批处理模式+全局排序将作业设置为批处理模式,并对字符串时间戳进行类型转换后排序:--设置为批处理模式(关键!)SET'execution.runtime-mode'='batch';--从Hive
- flink-sql读写hive-1.13
第一片心意
flinkflinksqlhive
1.版本说明本文档内容基于flink-1.13.x,其他版本的整理,请查看本人博客的flink专栏其他文章。1.1.概述ApacheHive已经成为了数据仓库生态系统中的核心。它不仅仅是一个用于大数据分析和ETL场景的SQL引擎,同样也是一个数据管理平台,可用于发现,定义,和演化数据。Flink与Hive的集成包含两个层面。一是利用了Hive的MetaStore作为持久化的Catalog,用户可通
- flink sql如何对hive string类型的时间戳进行排序
在FlinkSQL中对Hive表的STRING类型时间戳进行排序,需要先将字符串转换为时间类型,再基于时间类型排序。以下是具体方法和示例:一、核心解决方案1.字符串转TIMESTAMP后排序若Hive中的时间戳格式为'yyyy-MM-ddHH:mm:ss'(如'2024-01-0112:00:00'),可直接转为TIMESTAMP排序:SELECT*FROMhive_tableORDERBYTO_
- 基于Socket来构建无界数据流并通过Flink框架进行处理
每天五分钟玩转人工智能
Flink技术实战flink大数据Flink分布式无界数据
本文重点随着大数据技术的不断发展,实时数据流处理已成为企业应对海量数据、实现快速决策的关键技术。ApacheFlink是一个开源的流处理框架,它能够对无界数据流进行高效的、精确的处理。本文将介绍如何通过Socket构建无界数据流,并利用Flink框架进行无界流处理。基于Socket构建无界数据无界数据指的是源源不断产生的数据,这些数据通常来自各种实时数据源,如用户行为日志、传感器数据等。Socke
- Flink cdc同步增量数据timestamp字段相差八小时(分析|解决)不是粘贴复制的!
BUG FIXER
大数据flinkandroid大数据
问题我使用flinkcdc同步mysql到mysql遇到了timestamp字段缺少八小时的问题。很少无语,flink,cdc,debezium时区都设置了,没有任何效果!分析问题出现在mysqlbinlog身上!!!因为默认mysql会使用UTC来存储binlog,你可以使用下方的sql验证:mysqlbinlog--base64-output=DECODE-ROWS-v--start-date
- 如何解决Flink CDC同步时间类型字段8小时时间差的问题,以MySQL为例
智海观潮
Flinkflinkflinkcdc大数据实时数据同步
在使用FlinkCDC进行数据同步时,默认情况下经常会遇到时间类型的字段与实际值相差8个小时的问题。本文以MySQL为例提供解决方案,其他数据源也可以参考这类实现。原文链接:https://mp.weixin.qq.com/s/_f41ES8UquM-kj3Ie8JU_g1.设置server时区比如MySQL服务的时区为UTC时间,可以参考以下code设置时区。MySqlSourcemySqlSo
- Paimon对比基于消息队列(如Kafka)的传统实时数仓方案的优势
lifallen
Paimon大数据数据库数据结构java分布式apache数据仓库
弊端:数据重复->优势:Paimon主键表原生去重原方案弊端(Kafka)问题:消息队列(Kafka)是仅支持追加(Append-Only)的日志流。当Flink作业发生故障恢复(Failover)或业务逻辑迭代重跑数据时,同样的数据会被再次写入消息队列,形成重复数据。影响:下游应用(如DWS层、ADS层或直接对接的BI报表)必须自己实现复杂的去重逻辑,这不仅消耗大量计算资源(“资源消耗至少增加一
- Flink 流处理的核心基石【时间语义、水位线、状态、检查点、反压 】
csdn_tom_168
大数据flink核心时间语义水位线状态检查点反压
Flink流处理的核心基石【时间语义、水位线、状态、检查点、反压】,这些概念相互协作,构建了Flink高吞吐、低延迟、高容错的实时计算能力。以下是这些核心技术的深度解析及其内在联系:一、五大基石的内在联系驱动触发计算持久化保护恢复时间语义水位线状态管理检查点反压二、核心组件深度解析1.时间语义(TimeSemantics)核心作用:定义事件的时间维度//设置事件时间语义(关键配置)env.setS
- 用Flink实现的一个实时订单对账功能, Flink的双流实时对账
1.为什么业务订单数据不用Mysql之类的强事务性数据库监控反而用Flink的实时?一般这种涉及到订单的数据流都要用mysql监控实现,但是鉴于减少mysql的数据库压力和提高更实时性,可以考虑用Flink实时的数据流做实时的参考2.如何处理乱序数据?使用watermark水位保证第一层数据延迟.PS:这里的水位不能设置太长延迟使用processfuntion更加灵活的处理迟到数据,设置一个定时器
- Flink 多流转换 (三)CoProcessFunction合流操作案例
Alienware^
#FlinkFlink
文章目录下面是CoProcessFunction的一个具体示例:我们可以实现一个实时对账的需求,也就是app的支付操作和第三方的支付操作的一个双流Join。App的支付事件和第三方的支付事件将会互相等待5秒钟,如果等不来对应的支付事件,那么就输出报警信息。程序如下:Gitee源代码如下publicclassBillCheckExample{publicstaticvoidmain(String[]
- Flink双流处理:实时对账实现1
Flink双流处理:实时对账实现1去发现同类优质开源项目:https://gitcode.com/资源描述本资源文件详细介绍了Flink双流处理的实时对账实现。内容涵盖了基础概念、双流处理的方法以及实战案例,帮助开发者深入理解Flink在实时对账场景中的应用。内容概述基础概念介绍了Flink的基本概念和架构,为后续的双流处理打下基础。双流处理方法详细讲解了Flink中双流处理的核心方法和技巧,帮助
- Flink双流实时对账
在电商、金融、银行、支付等涉及到金钱相关的领域,为了安全起见,一般都有对账的需求。比如,对于订单支付事件,用户通过某宝付款,虽然用户支付成功,但是用户支付完成后并不算成功,我们得确认平台账户上是否到账了。针对上述的场景,我们可以采用批处理,或离线计算等技术手段,通过定时任务,每天结束后,扫描数据库中的数据,核对当天的支付数据和交易数据,进行对账。想要达到实时对账的效果,比如有的用户支付成功但是并没
- [特殊字符] 实时数据洪流突围战:Flink+Paimon实现毫秒级分析的架构革命(附压测报告)——日均百亿级数据处理成本降低60%的工业级方案
Lucas55555555
flink大数据
引言:流批一体的时代拐点据阿里云2025白皮书显示,实时数据处理需求年增速达240%,但传统Lambda架构资源消耗占比超运维成本的70%。某电商平台借助Flink+Paimon重构实时数仓后,端到端延迟从分钟级压缩至800ms,计算资源节省5.6万核/月。技术红利窗口期:2025年ApachePaimon1.0正式发布,支持秒级快照与湖仓一体,成为替代Iceberg的新范式一、痛点深挖:实时数仓
- Flink 2.0 DataStream算子全景
Edingbrugh.南空
大数据flinkflink人工智能
在实时流处理中,ApacheFlink的DataStreamAPI算子是构建流处理pipeline的基础单元。本文基于Flink2.0,聚焦算子的核心概念、分类及高级特性。一、算子核心概念:流处理的"原子操作1.数据流拓扑(StreamTopology)每个Flink应用可抽象为有向无环图(DAG),由源节点(Source)、算子节点(Operator)和汇节点(Sink)构成,算子通过数据流(S
- FlinkSQL 自定义函数详解
Tit先生
基础flinksql大数据java
FlinkSQL函数详解自定义函数除了内置函数之外,FlinkSQL还支持自定义函数,我们可以通过自定义函数来扩展函数的使用FlinkSQL当中自定义函数主要分为四大类:1.ScalarFunction:标量函数特点:每次只接收一行的数据,输出结果也是1行1列典型的标量函数如:upper(str),lower(str),abs(salary)2.TableFunction:表生成函数特点:运行时每
- Flink自定义函数之聚合函数(UDAGG函数)
土豆马铃薯
Flinkflink大数据
1.聚合函数概念聚合函数:将一个表的一个或多个行并且具有一个或多个属性聚合为标量值。聚合函数理解:假设一个关于饮料的表。表里面有三个字段,分别是id、name、price,表里有5行数据。假设你需要找到所有饮料里最贵的饮料的价格,即执行一个max()聚合。你需要遍历所有5行数据,而结果就只有一个数值。2.聚合函数实现聚合函数主要通过扩展AggregateFunction类实现。AggregateF
- Flink时间窗口详解
bxlj_jcj
Flinkflink大数据
一、引言在大数据流处理的领域中,Flink的时间窗口是一项极为关键的技术,想象一下,你要统计一个电商网站每小时的订单数量。由于订单数据是持续不断产生的,这就形成了一个无界数据流。如果没有时间窗口的概念,你就需要处理无穷无尽的数据,难以进行有效的统计分析。而时间窗口的作用,就是将这无界的数据流按照时间维度切割成一个个有限的“数据块”,方便我们对这些数据进行处理和分析。比如,我们可以定义一个1小时的时
- Flink DataStream API详解(一)
bxlj_jcj
Flinkflink大数据
一、引言Flink的DataStreamAPI,在流处理领域大显身手的核心武器。在很多实时数据处理场景中,如电商平台实时分析用户购物行为以实现精准推荐,金融领域实时监控交易数据以防范风险,DataStreamAPI都发挥着关键作用,能够对源源不断的数据流进行高效处理和分析。接下来,就让我们一起深入探索FlinkDataStreamAPI。二、DataStream编程基础搭建在开始使用FlinkDa
- flink自定义函数
逆风飞翔的小叔
flink入门到精通flink大数据bigdata
前言在很多情况下,尽管flink提供了丰富的转换算子API可供开发者对数据进行各自处理,比如map(),filter()等,但在实际使用的时候仍然不能满足所有的场景,这时候,就需要开发人员基于常用的转换算子的基础上,做一些自定义函数的处理1、来看一个常用的操作原始待读取的文件核心代码importorg.apache.flink.api.common.functions.FilterFunction
- Flink自定义函数的常用方式
飞Link
Waterflinkjava大数据
一、实现Flink提供的接口//自定义函数classMyMapFunctionimplementsMapFunction{publicIntegermap(Stringvalue){returnInteger.parseInt(value
- Flink DataStream API详解(二)
一、引言咱两书接上回,上一篇文章主要介绍了DataStreamAPI一些基本的使用,主要是针对单数据流的场景下,但是在实际的流处理场景中,常常需要对多个数据流进行合并、拆分等操作,以满足复杂的业务需求。Flink的DataStreamAPI提供了一系列强大的多流转换算子,如union、connect和split等,下面我们来详细了解一下它们的功能和用法。二、多流转换2.1union算子union算
- 【Kafka】Failed to send data to Kafka: Expiring 30 record(s) for xxx 732453 ms has passed since last
九师兄
kafkabigdatazookeeper
文章目录1.美图2.背景2.尝试方案13.尝试解决24.场景再现25.场景46.场景57.场景78.场景8M.拓展本文为博主九师兄(QQ:541711153欢迎来探讨技术)原创文章,未经允许博主不允许转载。1.美图问题与【Flink】Flink写入kafka报错FailedtosenddatatoKafka:Expiring4record(s)for20001mshaspassed重复了。2.背景
- 【Flink】flink Kafka报错 : Failed to send data to Kafka: This server is not the leader for that topic-pa
九师兄
flinkkafka大数据
1.背景出现这个问题的背景请参考:【Kafka】FailedtosenddatatoKafka:Expiring30record(s)forxxx732453mshaspassedsincelast[2020-09-0513:16:09
- java封装继承多态等
麦田的设计者
javaeclipsejvmcencapsulatopn
最近一段时间看了很多的视频却忘记总结了,现在只能想到什么写什么了,希望能起到一个回忆巩固的作用。
1、final关键字
译为:最终的
&
- F5与集群的区别
bijian1013
weblogic集群F5
http请求配置不是通过集群,而是F5;集群是weblogic容器的,如果是ejb接口是通过集群。
F5同集群的差别,主要还是会话复制的问题,F5一把是分发http请求用的,因为http都是无状态的服务,无需关注会话问题,类似
- LeetCode[Math] - #7 Reverse Integer
Cwind
java题解MathLeetCodeAlgorithm
原题链接:#7 Reverse Integer
要求:
按位反转输入的数字
例1: 输入 x = 123, 返回 321
例2: 输入 x = -123, 返回 -321
难度:简单
分析:
对于一般情况,首先保存输入数字的符号,然后每次取输入的末位(x%10)作为输出的高位(result = result*10 + x%10)即可。但
- BufferedOutputStream
周凡杨
首先说一下这个大批量,是指有上千万的数据量。
例子:
有一张短信历史表,其数据有上千万条数据,要进行数据备份到文本文件,就是执行如下SQL然后将结果集写入到文件中!
select t.msisd
- linux下模拟按键输入和鼠标
被触发
linux
查看/dev/input/eventX是什么类型的事件, cat /proc/bus/input/devices
设备有着自己特殊的按键键码,我需要将一些标准的按键,比如0-9,X-Z等模拟成标准按键,比如KEY_0,KEY-Z等,所以需要用到按键 模拟,具体方法就是操作/dev/input/event1文件,向它写入个input_event结构体就可以模拟按键的输入了。
linux/in
- ContentProvider初体验
肆无忌惮_
ContentProvider
ContentProvider在安卓开发中非常重要。与Activity,Service,BroadcastReceiver并称安卓组件四大天王。
在android中的作用是用来对外共享数据。因为安卓程序的数据库文件存放在data/data/packagename里面,这里面的文件默认都是私有的,别的程序无法访问。
如果QQ游戏想访问手机QQ的帐号信息一键登录,那么就需要使用内容提供者COnte
- 关于Spring MVC项目(maven)中通过fileupload上传文件
843977358
mybatisspring mvc修改头像上传文件upload
Spring MVC 中通过fileupload上传文件,其中项目使用maven管理。
1.上传文件首先需要的是导入相关支持jar包:commons-fileupload.jar,commons-io.jar
因为我是用的maven管理项目,所以要在pom文件中配置(每个人的jar包位置根据实际情况定)
<!-- 文件上传 start by zhangyd-c --&g
- 使用svnkit api,纯java操作svn,实现svn提交,更新等操作
aigo
svnkit
原文:http://blog.csdn.net/hardwin/article/details/7963318
import java.io.File;
import org.apache.log4j.Logger;
import org.tmatesoft.svn.core.SVNCommitInfo;
import org.tmateso
- 对比浏览器,casperjs,httpclient的Header信息
alleni123
爬虫crawlerheader
@Override
protected void doGet(HttpServletRequest req, HttpServletResponse res) throws ServletException, IOException
{
String type=req.getParameter("type");
Enumeration es=re
- java.io操作 DataInputStream和DataOutputStream基本数据流
百合不是茶
java流
1,java中如果不保存整个对象,只保存类中的属性,那么我们可以使用本篇文章中的方法,如果要保存整个对象 先将类实例化 后面的文章将详细写到
2,DataInputStream 是java.io包中一个数据输入流允许应用程序以与机器无关方式从底层输入流中读取基本 Java 数据类型。应用程序可以使用数据输出流写入稍后由数据输入流读取的数据。
- 车辆保险理赔案例
bijian1013
车险
理赔案例:
一货运车,运输公司为车辆购买了机动车商业险和交强险,也买了安全生产责任险,运输一车烟花爆竹,在行驶途中发生爆炸,出现车毁、货损、司机亡、炸死一路人、炸毁一间民宅等惨剧,针对这几种情况,该如何赔付。
赔付建议和方案:
客户所买交强险在这里不起作用,因为交强险的赔付前提是:“机动车发生道路交通意外事故”;
如果是交通意外事故引发的爆炸,则优先适用交强险条款进行赔付,不足的部分由商业
- 学习Spring必学的Java基础知识(5)—注解
bijian1013
javaspring
文章来源:http://www.iteye.com/topic/1123823,整理在我的博客有两个目的:一个是原文确实很不错,通俗易懂,督促自已将博主的这一系列关于Spring文章都学完;另一个原因是为免原文被博主删除,在此记录,方便以后查找阅读。
有必要对
- 【Struts2一】Struts2 Hello World
bit1129
Hello world
Struts2 Hello World应用的基本步骤
创建Struts2的Hello World应用,包括如下几步:
1.配置web.xml
2.创建Action
3.创建struts.xml,配置Action
4.启动web server,通过浏览器访问
配置web.xml
<?xml version="1.0" encoding="
- 【Avro二】Avro RPC框架
bit1129
rpc
1. Avro RPC简介 1.1. RPC
RPC逻辑上分为二层,一是传输层,负责网络通信;二是协议层,将数据按照一定协议格式打包和解包
从序列化方式来看,Apache Thrift 和Google的Protocol Buffers和Avro应该是属于同一个级别的框架,都能跨语言,性能优秀,数据精简,但是Avro的动态模式(不用生成代码,而且性能很好)这个特点让人非常喜欢,比较适合R
- lua set get cookie
ronin47
lua cookie
lua:
local access_token = ngx.var.cookie_SGAccessToken
if access_token then
ngx.header["Set-Cookie"] = "SGAccessToken="..access_token.."; path=/;Max-Age=3000"
end
- java-打印不大于N的质数
bylijinnan
java
public class PrimeNumber {
/**
* 寻找不大于N的质数
*/
public static void main(String[] args) {
int n=100;
PrimeNumber pn=new PrimeNumber();
pn.printPrimeNumber(n);
System.out.print
- Spring源码学习-PropertyPlaceholderHelper
bylijinnan
javaspring
今天在看Spring 3.0.0.RELEASE的源码,发现PropertyPlaceholderHelper的一个bug
当时觉得奇怪,上网一搜,果然是个bug,不过早就有人发现了,且已经修复:
详见:
http://forum.spring.io/forum/spring-projects/container/88107-propertyplaceholderhelper-bug
- [逻辑与拓扑]布尔逻辑与拓扑结构的结合会产生什么?
comsci
拓扑
如果我们已经在一个工作流的节点中嵌入了可以进行逻辑推理的代码,那么成百上千个这样的节点如果组成一个拓扑网络,而这个网络是可以自动遍历的,非线性的拓扑计算模型和节点内部的布尔逻辑处理的结合,会产生什么样的结果呢?
是否可以形成一种新的模糊语言识别和处理模型呢? 大家有兴趣可以试试,用软件搞这些有个好处,就是花钱比较少,就算不成
- ITEYE 都换百度推广了
cuisuqiang
GoogleAdSense百度推广广告外快
以前ITEYE的广告都是谷歌的Google AdSense,现在都换成百度推广了。
为什么个人博客设置里面还是Google AdSense呢?
都知道Google AdSense不好申请,这在ITEYE上也不是讨论了一两天了,强烈建议ITEYE换掉Google AdSense。至少,用一个好申请的吧。
什么时候能从ITEYE上来点外快,哪怕少点
- 新浪微博技术架构分析
dalan_123
新浪微博架构
新浪微博在短短一年时间内从零发展到五千万用户,我们的基层架构也发展了几个版本。第一版就是是非常快的,我们可以非常快的实现我们的模块。我们看一下技术特点,微博这个产品从架构上来分析,它需要解决的是发表和订阅的问题。我们第一版采用的是推的消息模式,假如说我们一个明星用户他有10万个粉丝,那就是说用户发表一条微博的时候,我们把这个微博消息攒成10万份,这样就是很简单了,第一版的架构实际上就是这两行字。第
- 玩转ARP攻击
dcj3sjt126com
r
我写这片文章只是想让你明白深刻理解某一协议的好处。高手免看。如果有人利用这片文章所做的一切事情,盖不负责。 网上关于ARP的资料已经很多了,就不用我都说了。 用某一位高手的话来说,“我们能做的事情很多,唯一受限制的是我们的创造力和想象力”。 ARP也是如此。 以下讨论的机子有 一个要攻击的机子:10.5.4.178 硬件地址:52:54:4C:98
- PHP编码规范
dcj3sjt126com
编码规范
一、文件格式
1. 对于只含有 php 代码的文件,我们将在文件结尾处忽略掉 "?>" 。这是为了防止多余的空格或者其它字符影响到代码。例如:<?php$foo = 'foo';2. 缩进应该能够反映出代码的逻辑结果,尽量使用四个空格,禁止使用制表符TAB,因为这样能够保证有跨客户端编程器软件的灵活性。例
- linux 脱机管理(nohup)
eksliang
linux nohupnohup
脱机管理 nohup
转载请出自出处:http://eksliang.iteye.com/blog/2166699
nohup可以让你在脱机或者注销系统后,还能够让工作继续进行。他的语法如下
nohup [命令与参数] --在终端机前台工作
nohup [命令与参数] & --在终端机后台工作
但是这个命令需要注意的是,nohup并不支持bash的内置命令,所
- BusinessObjects Enterprise Java SDK
greemranqq
javaBOSAPCrystal Reports
最近项目用到oracle_ADF 从SAP/BO 上调用 水晶报表,资料比较少,我做一个简单的分享,给和我一样的新手 提供更多的便利。
首先,我是尝试用JAVA JSP 去访问的。
官方API:http://devlibrary.businessobjects.com/BusinessObjectsxi/en/en/BOE_SDK/boesdk_ja
- 系统负载剧变下的管控策略
iamzhongyong
高并发
假如目前的系统有100台机器,能够支撑每天1亿的点击量(这个就简单比喻一下),然后系统流量剧变了要,我如何应对,系统有那些策略可以处理,这里总结了一下之前的一些做法。
1、水平扩展
这个最容易理解,加机器,这样的话对于系统刚刚开始的伸缩性设计要求比较高,能够非常灵活的添加机器,来应对流量的变化。
2、系统分组
假如系统服务的业务不同,有优先级高的,有优先级低的,那就让不同的业务调用提前分组
- BitTorrent DHT 协议中文翻译
justjavac
bit
前言
做了一个磁力链接和BT种子的搜索引擎 {Magnet & Torrent},因此把 DHT 协议重新看了一遍。
BEP: 5Title: DHT ProtocolVersion: 3dec52cb3ae103ce22358e3894b31cad47a6f22bLast-Modified: Tue Apr 2 16:51:45 2013 -070
- Ubuntu下Java环境的搭建
macroli
java工作ubuntu
配置命令:
$sudo apt-get install ubuntu-restricted-extras
再运行如下命令:
$sudo apt-get install sun-java6-jdk
待安装完毕后选择默认Java.
$sudo update- alternatives --config java
安装过程提示选择,输入“2”即可,然后按回车键确定。
- js字符串转日期(兼容IE所有版本)
qiaolevip
TODateStringIE
/**
* 字符串转时间(yyyy-MM-dd HH:mm:ss)
* result (分钟)
*/
stringToDate : function(fDate){
var fullDate = fDate.split(" ")[0].split("-");
var fullTime = fDate.split("
- 【数据挖掘学习】关联规则算法Apriori的学习与SQL简单实现购物篮分析
superlxw1234
sql数据挖掘关联规则
关联规则挖掘用于寻找给定数据集中项之间的有趣的关联或相关关系。
关联规则揭示了数据项间的未知的依赖关系,根据所挖掘的关联关系,可以从一个数据对象的信息来推断另一个数据对象的信息。
例如购物篮分析。牛奶 ⇒ 面包 [支持度:3%,置信度:40%] 支持度3%:意味3%顾客同时购买牛奶和面包。 置信度40%:意味购买牛奶的顾客40%也购买面包。 规则的支持度和置信度是两个规则兴
- Spring 5.0 的系统需求,期待你的反馈
wiselyman
spring
Spring 5.0将在2016年发布。Spring5.0将支持JDK 9。
Spring 5.0的特性计划还在工作中,请保持关注,所以作者希望从使用者得到关于Spring 5.0系统需求方面的反馈。