链接:https://pan.baidu.com/s/10KSLtxnCY3vY6jpmNddgpg
获取提取码可关注威心公宗浩zdb呀,笔记整理不易,我给你白嫖,支持一下加个粉撒~
一维数组情况:
import numpy as np
a = np.array([1, 2, 3, 4])
b = np.array(['产品编号', '销售数量', '销售单价', '销售金额'])
print(a)
print(b)
[1 2 3 4]
['产品编号' '销售数量' '销售单价' '销售金额']
二维数组情况:
import numpy as np
c = np.array([[1, 2, 3], [4, 5, 6], [7, 8, 9]])
print (c)
[[1 2 3]
[4 5 6]
[7 8 9]]
参数见下表
array(object, dtype=None, copy=True, order=None, subok=False, ndmin=0)
参数 | 说明 |
---|---|
object | 必选,为一个序列型对象,如列表、元组、集合等,还可以是一个已创建好的数组 |
dtype | 可选,用于指定数组元素的数据类型 |
copy | 可选,用于设置是否需要复制对象 |
order | 可选,用于指定创建数组的样式 |
subok | 可选,默认返回一个与基类的类型一致的数组 |
ndmin | 可选,用于指定生成数组的最小维度 |
索引从0开始,记左不记右
3参数情况:
import numpy as np
d = np.arange(1,20,4) #第3个参数为步长 可选 默认为1 1~19,步长4 记左不记右
print(d)
[ 1 5 9 13 17]
2参数情况:
import numpy as np
d = np.arange(1,20)
print(d)
[ 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19]
1参数情况:
import numpy as np
d = np.arange(20)
print(d)
[ 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19]
参数说明见表
arange(start, stop, step, dtype=None)
参数 | 说明 |
---|---|
start | 可选,表示起始值。省略时默认为0 |
stop | 必选,表示结束值。生成的数组元素不包括该值 |
step | 可选,表示步长。省略时默认为1。给出该参数则必须给出start参数 |
dtype | 可选,表示数组元素类型。默认为None |
1. rand()函数:生成元素值在[0,1)区间的随机数
一维情况:
import numpy as np
e = np.random.rand(3)
print(e)
[0.8412559 0.63220568 0.7395547 ]
二维情况:
import numpy as np
e = np.random.rand(2, 3)
print(e)
[[0.03654404 0.33348249 0.30089453]
[0.35291365 0.56683093 0.41812811]]
2. randn()函数:生成元素值在[0,1)区间的随机数,且符合标准正态分布
一维情况:
import numpy as np
e = np.random.randn(3)
print(e)
[ 0.36809175 -0.07224965 -0.33366574]
二维情况:
import numpy as np
e = np.random.randn(3, 3)
print(e)
[[ 1.14014499 -0.95577809 -0.94003745]
[-2.61768236 -0.6565676 0.74041531]
[-0.3138474 0.68276791 0.17315121]]
3. randint()函数:生成指定范围的随机数,记左不记右
一维情况:
import numpy as np
e = np.random.randint(1, 5, 10) #随机数范围:[1,5) 10个数
print(e)
[4 1 2 4 1 3 2 4 1 2]
二维情况:第三个参数指定维度
import numpy as np
e = np.random.randint(1, 10, (4, 2)) #随机数范围:[1,10)
print(e)
[[4 4]
[2 5]
[3 3]
[7 8]]
import numpy as np
arr = np.array([[1, 2],[3, 4],[5, 6]])
print(arr.shape)
(3, 2)
只查看行数、或者列数
import numpy as np
arr = np.array([[1, 2],[3, 4],[5, 6]])
print(arr.shape[0]) #查看行数
print(arr.shape[1]) #查看列数
3
2
import numpy as np
arr = np.array([[1, 2],[3, 4],[5, 6]])
print(arr.size)
6
import numpy as np
arr = np.array([[1.3, 2, 3.6, 4], [5, 6, 7.8, 8]])
print(arr.dtype)
float64
import numpy as np
arr = np.array([[1.3, 2, 3.6, 4], [5, 6, 7.8, 8]])
arr1 = arr.astype(int)
print(arr1)
print(arr1.dtype)
[[1 2 3 4]
[5 6 7 8]]
int32
import numpy as np
arr = np.array([[1, 2],[3, 4],[5, 6]])
print(arr.ndim)
2
1. 选取单个元素
import numpy as np
arr = np.array([12, 2, 40, 64, 56, 6, 57, 18, 95, 17, 21, 12])
print(arr[0])
print(arr[5])
print(arr[-1]) #倒数第1个
print(arr[-4])
12
6
12
95
2. 选取连续的元素
import numpy as np
arr = np.array([12, 2, 40, 64, 56, 6, 57, 18, 95, 17, 21, 12])
print(arr[1:6])
print(arr[3:-2])
print(arr[:3])
print(arr[:-3])
print(arr[3:])
print(arr[-3:])
[ 2 40 64 56 6]
[64 56 6 57 18 95 17]
[12 2 40]
[12 2 40 64 56 6 57 18 95]
[64 56 6 57 18 95 17 21 12]
[17 21 12]
3. 选取不连续的元素
import numpy as np
arr = np.array([12, 2, 40, 64, 56, 6, 57, 18, 95, 17, 21, 12])
print(arr[1:5:2]) #[1,5) 步长为2
print(arr[5:1:-2]) #第三个参数指定步长
print(arr[::3])
print(arr[3::])
print(arr[:3:])
[ 2 64]
[ 6 64]
[12 64 57 17]
[64 56 6 57 18 95 17 21 12]
[12 2 40]
逗号隔开两个索引
1. 选取单个元素
import numpy as np
arr = np.array([[1, 2, 3], [4, 5, 6], [7, 8, 9], [10, 11, 12]])
print(arr[1, 2]) #第1行第2列 索引从0开始
6
2. 选取单行或单列元素
import numpy as np
arr = np.array([[1, 2, 3], [4, 5, 6], [7, 8, 9], [10, 11, 12]])
print(arr[2])
print(arr[:, 1])
[7 8 9]
[ 2 5 8 11]
3. 选取某些行或某些列的元素
某些行
import numpy as np
arr = np.array([[1, 2, 3], [4, 5, 6], [7, 8, 9], [10, 11, 12]])
print(arr[1:3])
print(arr[:2])
print(arr[2:])
[[4 5 6]
[7 8 9]]
[[1 2 3]
[4 5 6]]
[[ 7 8 9]
[10 11 12]]
某些列
import numpy as np
arr = np.array([[1, 2, 3, 4], [5, 6, 7, 8], [9, 10, 11, 12], [13, 14, 15, 16]])
print(arr[:, 1:3])
print(arr[:, :2])
print(arr[:, 2:])
[[ 2 3]
[ 6 7]
[10 11]
[14 15]]
[[ 1 2]
[ 5 6]
[ 9 10]
[13 14]]
[[ 3 4]
[ 7 8]
[11 12]
[15 16]]
4. 同时选取行列元素
import numpy as np
arr = np.array([[1, 2, 3, 4], [5, 6, 7, 8], [9, 10, 11, 12], [13, 14, 15, 16]])
print(arr[0:2, 1:3])
[[2 3]
[6 7]]
import numpy as np
arr = np.array([1, 2, 3, 4, 5, 6, 7, 8])
a = arr.reshape(2, 4) #需要重塑前后元素个数相等才行
b = arr.reshape(4, 2)
print(a)
print(b)
[[1 2 3 4]
[5 6 7 8]]
[[1 2]
[3 4]
[5 6]
[7 8]]
import numpy as np
arr = np.array([[1, 2, 3, 4], [5, 6, 7, 8], [9, 10, 11, 12]])
c = arr.reshape(4, 3)
d = arr.reshape(2, 6)
print(c)
print(d)
[[ 1 2 3]
[ 4 5 6]
[ 7 8 9]
[10 11 12]]
[[ 1 2 3 4 5 6]
[ 7 8 9 10 11 12]]
import numpy as np
arr = np.array([[1, 2, 3, 4], [5, 6, 7, 8], [9, 10, 11, 12]])
print(arr.flatten()) #降为一维
print(arr.ravel())
[ 1 2 3 4 5 6 7 8 9 10 11 12]
[ 1 2 3 4 5 6 7 8 9 10 11 12]
1. T属性
import numpy as np
arr = np.array([[1, 2, 3, 4], [5, 6, 7, 8], [9, 10, 11, 12]])
print(arr)
print(arr.T)
[[ 1 2 3 4]
[ 5 6 7 8]
[ 9 10 11 12]]
[[ 1 5 9]
[ 2 6 10]
[ 3 7 11]
[ 4 8 12]]
2. transpose()函数
import numpy as np
arr = np.array([[1, 2, 3, 4], [5, 6, 7, 8], [9, 10, 11, 12]])
arr1 = np.transpose(arr)
print(arr1)
[[ 1 5 9]
[ 2 6 10]
[ 3 7 11]
[ 4 8 12]]
1. append()函数
import numpy as np
arr = np.array([[1, 2, 3], [4, 5, 6]])
arr1 = np.append(arr, [[7, 8, 9]])
print(arr1)
[1 2 3 4 5 6 7 8 9]
可以看出append()函数在二维数组中添加元素,结果转为了一维数组。
那怎么保持二维数组呢?可以设置axis参数按行或者按列添加
axis=0:按行添加
import numpy as np
arr = np.array([[1, 2, 3], [4, 5, 6]])
arr1 = np.append(arr, [[7, 8, 9]], axis = 0)
print(arr1)
[[1 2 3]
[4 5 6]
[7 8 9]]
axis=1:按列添加
import numpy as np
arr = np.array([[1, 2, 3], [4, 5, 6]])
arr1 = np.append(arr, [[7, 8],[9, 10]], axis = 1)
print(arr1)
[[ 1 2 3 7 8]
[ 4 5 6 9 10]]
append()函数参数如下
append(arr, values, axis=None)
参数 | 说明 |
---|---|
arr | 必选,要添加元素的数组 |
values | 必选,要添加的数组元素 |
axis | 可选,默认为None。省略此参数时,默认当一维数组尾插元素。为0按行添加;为1按列添加 |
2. insert()函数
import numpy as np
arr = np.array([[1, 2], [3, 4], [5, 6]])
arr1 = np.insert(arr, 1, [7, 8])
print(arr1)
[1 7 8 2 3 4 5 6]
可以看出先把二维数组降成了一维数组,再在索引为1的位置添加元素。
那么怎么保持在二维添加元素呢?同样设置axis参数
import numpy as np
arr = np.array([[1, 2], [3, 4], [5, 6]])
arr1 = np.insert(arr, 1, [7, 8], axis = 0)
arr2 = np.insert(arr, 1, [7, 8, 9], axis = 1)
print(arr1)
print(arr2)
[[1 2]
[7 8]
[3 4]
[5 6]]
[[1 7 2]
[3 8 4]
[5 9 6]]
insert()参数如下
insert(arr, obj, values, axis)
参数 | 说明 |
---|---|
arr | 必选,要插入元素的数组 |
obj | 必选,数组的索引值,表示插入元素的位置 |
values | 必选,要插入的元素 |
axis | 可选,省略此参数时,默认当一维数组插入。为0按行;为1按列 |
也分按行和按列删除
import numpy as np
arr = np.array([[1, 2, 3], [4, 5, 6], [7, 8, 9]])
arr1 = np.delete(arr, 2)
arr2 = np.delete(arr, 2, axis = 0)
arr3 = np.delete(arr, 2, axis = 1)
print(arr1)
print(arr2)
print(arr3)
[1 2 4 5 6 7 8 9]
[[1 2 3]
[4 5 6]]
[[1 2]
[4 5]
[7 8]]
标记缺失值:isnan()函数
import numpy as np
arr = np.array([1, 2, 3, 4, 5, 6, np.nan, 8, 9])
print(arr)
print(np.isnan(arr))
[ 1. 2. 3. 4. 5. 6. nan 8. 9.]
[False False False False False False True False False]
补充缺失值:
arr[np.isnan(arr)] = 0
print(arr)
[1. 2. 3. 4. 5. 6. 0. 8. 9.]
import numpy as np
arr = np.array([8, 4, 2, 3, 5, 2, 5, 5, 6, 8, 8, 9])
arr1 = np.unique(arr)
arr1, arr2 = np.unique(arr, return_counts=True) # 两个返回值 arr1为去重后数组 arr2为每个元素出现的次数
print(arr1)
print(arr2)
[2 3 4 5 6 8 9]
[2 1 1 3 1 3 1]
1. concatenate()函数
同样axis参数可以指定拼接按行还是按列
import numpy as np
arr1 = np.array([[1, 2, 3], [4, 5, 6]])
arr2 = np.array([[7, 8, 9], [10, 11, 12]])
arr3 = np.concatenate((arr1, arr2), axis=0) #行方向上拼接
arr4 = np.concatenate((arr1, arr2), axis=1) #列方向上拼接
print(arr3)
print(arr4)
[[ 1 2 3]
[ 4 5 6]
[ 7 8 9]
[10 11 12]]
[[ 1 2 3 7 8 9]
[ 4 5 6 10 11 12]]
2. hstack()函数:以水平堆叠的方式拼接数组
import numpy as np
arr1 = np.array([[1, 2, 3], [4, 5, 6]])
arr2 = np.array([[7, 8, 9], [10, 11, 12]])
arr3 = np.hstack((arr1, arr2))
print(arr3)
[[ 1 2 3 7 8 9]
[ 4 5 6 10 11 12]]
3. vstack()函数:以垂直堆叠的方式拼接数组
import numpy as np
arr1 = np.array([[1, 2, 3], [4, 5, 6]])
arr2 = np.array([[7, 8, 9], [10, 11, 12]])
arr3 = np.vstack((arr1, arr2))
print(arr3)
[[ 1 2 3]
[ 4 5 6]
[ 7 8 9]
[10 11 12]]
1. split()函数
import numpy as np
arr = np.array([1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12])
arr1 = np.split(arr, 2) #第2个参数指定拆成几个数组
arr2 = np.split(arr, 4)
print(arr1)
print(arr2)
[array([1, 2, 3, 4, 5, 6]), array([ 7, 8, 9, 10, 11, 12])]
[array([1, 2, 3]), array([4, 5, 6]), array([7, 8, 9]), array([10, 11, 12])]
第二个参数还可以是数组,指定拆分的位置
import numpy as np
arr = np.array([1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12])
arr3 = np.split(arr, [2, 6])
arr4 = np.split(arr, [2, 3, 8, 10])
print(arr3)
print(arr4)
[array([1, 2]), array([3, 4, 5, 6]), array([ 7, 8, 9, 10, 11, 12])]
[array([1, 2]), array([3]), array([4, 5, 6, 7, 8]), array([ 9, 10]), array([11, 12])]
2. hsplit()函数和vsplit()函数
hsplit()函数:横向拆成几个数组
vsplit()函数:纵向拆成几个数组
import numpy as np
arr = np.array([[1, 2, 3, 4], [5, 6, 7, 8], [9 , 10, 11, 12],[13, 14, 15, 16]])
arr5 = np.hsplit(arr, 2)
arr6 = np.vsplit(arr, 2)
print(arr5)
print(arr6)
[array([[ 1, 2],
[ 5, 6],
[ 9, 10],
[13, 14]]), array([[ 3, 4],
[ 7, 8],
[11, 12],
[15, 16]])]
[array([[1, 2, 3, 4],
[5, 6, 7, 8]]), array([[ 9, 10, 11, 12],
[13, 14, 15, 16]])]
数组与数组之间的运算
import numpy as np
arr1 = np.array([[1, 2, 3, 4], [5, 6, 7, 8]])
arr2 = np.array([[9, 10, 11, 12], [13, 14, 15, 16]])
arr3 = arr1 + arr2 #对应位置的元素相加
arr4 = arr1 * arr2 #对应位置的元素相乘
print(arr3)
print(arr4)
[[10 12 14 16]
[18 20 22 24]]
[[ 9 20 33 48]
[ 65 84 105 128]]
数组与数值的运算
import numpy as np
arr = np.array([[1, 2, 3, 4], [5, 6, 7, 8]])
arr5 = arr + 5 #每个位置的元素+5
arr6 = arr * 10 #每个位置的元素*10
print(arr5)
print(arr6)
[[ 6 7 8 9]
[10 11 12 13]]
[[10 20 30 40]
[50 60 70 80]]
1. 求和:sum()函数
可以指定整个数组求和,还是按行或者按列
axis=0:每一列的元素求和
axis=1:每一行的元素求和
import numpy as np
arr = np.array([[1, 2, 3, 4], [5, 6, 7, 8], [9, 10, 11, 12]])
arr1 = arr.sum()
arr2 = arr.sum(axis=0) #每一列的元素求和
arr3 = arr.sum(axis=1) #每一行的元素求和
print(arr1)
print(arr2)
print(arr3)
78
[15 18 21 24]
[10 26 42]
2. 求平均值:mean()函数
axis=0:每一列求均值
axis=1:每一行求均值
import numpy as np
arr = np.array([[1, 2, 3, 4], [5, 6, 7, 8], [9, 10, 11, 12]])
arr1 = arr.mean()
arr2 = arr.mean(axis=0) #每一列求均值
arr3 = arr.mean(axis=1) #每一行求均值
print(arr1)
print(arr2)
print(arr3)
6.5
[5. 6. 7. 8.]
[ 2.5 6.5 10.5]
3. 求最值:max()函数
axis=0:每一列求最大值
axis=1:每一行求最大值
import numpy as np
arr = np.array([[1, 2, 3, 4], [5, 6, 7, 8], [9, 10, 11, 12]])
arr1 = arr.max()
arr2 = arr.max(axis=0) #每一列求最大值
arr3 = arr.max(axis=1) #每一行求最大值
print(arr1)
print(arr2)
print(arr3)
12
[ 9 10 11 12]
[ 4 8 12]
pandas有两个重要的数据结构对象:Series和DataFrame。
Series是创建一个一维数组对象,会自动生成行标签。
import pandas as pd
s = pd.Series(['短裤', '毛衣', '连衣裙', '牛仔裤'])
print(s)
0 短裤
1 毛衣
2 连衣裙
3 牛仔裤
dtype: object
index参数可以指定行标签
import pandas as pd
s1 = pd.Series(['短裤', '毛衣', '连衣裙', '牛仔裤'], index = ['a001', 'a002', 'a003', 'a004'])
print(s1)
a001 短裤
a002 毛衣
a003 连衣裙
a004 牛仔裤
dtype: object
使用Series对象还可以基于字典创建数据
import pandas as pd
s2 = pd.Series({'a001':'短裤', 'a002':'毛衣', 'a003':'连衣裙', 'a004':'牛仔裤'})
print(s2)
a001 短裤
a002 毛衣
a003 连衣裙
a004 牛仔裤
dtype: object
会自动生成行列标签
import pandas as pd
df = pd.DataFrame([['短裤', 45], ['毛衣', 69], ['连衣裙', 119], ['牛仔裤', 99]])
print(df)
0 1
0 短裤 45
1 毛衣 69
2 连衣裙 119
3 牛仔裤 99
可以columns参数指定列标签;index参数指定行标签
import pandas as pd
df1 = pd.DataFrame([['短裤', 45], ['毛衣', 69], ['连衣裙', 119], ['牛仔裤', 99]],
columns=['产品', '单价'], index=['a001', 'a002', 'a003', 'a004'])
print(df1)
产品 单价
a001 短裤 45
a002 毛衣 69
a003 连衣裙 119
a004 牛仔裤 99
也可以用字典形式生成数据
import pandas as pd
df3 = pd.DataFrame({'产品':['短裤', '毛衣', '连衣裙', '牛仔裤'],'单价':[45, 69, 119, 99]})
print(df3)
产品 单价
0 短裤 45
1 毛衣 69
2 连衣裙 119
3 牛仔裤 99
在用字典生成数据的基础上,同时指定行标签
import pandas as pd
df3 = pd.DataFrame({'产品':['短裤', '毛衣', '连衣裙', '牛仔裤'],'单价':[45, 69, 119, 99]}, index = ['a001', 'a002', 'a003', 'a004'])
print(df3)
产品 单价
a001 短裤 45
a002 毛衣 69
a003 连衣裙 119
a004 牛仔裤 99
例如对下表的数据进行读取
4月是第四个表,我们应把sheet_name参数指定为3;因为索引是从0开始的。
import pandas as pd
data = pd.read_excel('订单表.xlsx', sheet_name=3)
print(data)
订单编号 产品 数量 金额
0 d001 投影仪 5台 2000
1 d002 马克笔 5盒 300
2 d003 打印机 1台 298
3 d004 点钞机 1台 349
4 d005 复印纸 2箱 100
5 d006 条码纸 6卷 34
可以看出read_excel()函数自动创建了一个DataFrame对象,同时自动把第一行数据当做列标签。
header参数可以指定列标签
可以看出不给出header参数时,该参数默认为0。
import pandas as pd
data = pd.read_excel('订单表.xlsx', sheet_name=3, header=0)
print(data)
订单编号 产品 数量 金额
0 d001 投影仪 5台 2000
1 d002 马克笔 5盒 300
2 d003 打印机 1台 298
3 d004 点钞机 1台 349
4 d005 复印纸 2箱 100
5 d006 条码纸 6卷 34
header=1时结果如下:
import pandas as pd
data = pd.read_excel('订单表.xlsx', sheet_name=3, header=1)
print(data)
d001 投影仪 5台 2000
0 d002 马克笔 5盒 300
1 d003 打印机 1台 298
2 d004 点钞机 1台 349
3 d005 复印纸 2箱 100
4 d006 条码纸 6卷 34
header=None时结果如下:
import pandas as pd
data = pd.read_excel('订单表.xlsx', sheet_name = 3, header = None)
print(data)
0 1 2 3
0 订单编号 产品 数量 金额
1 d001 投影仪 5台 2000
2 d002 马克笔 5盒 300
3 d003 打印机 1台 298
4 d004 点钞机 1台 349
5 d005 复印纸 2箱 100
6 d006 条码纸 6卷 34
该参数默认为None
index_col=0时,第0列为列标签
import pandas as pd
data = pd.read_excel('订单表.xlsx', sheet_name=3, index_col=0)
print(data)
产品 数量 金额
订单编号
d001 投影仪 5台 2000
d002 马克笔 5盒 300
d003 打印机 1台 298
d004 点钞机 1台 349
d005 复印纸 2箱 100
d006 条码纸 6卷 34
index_col=0时
import pandas as pd
data = pd.read_excel('订单表.xlsx', sheet_name=3, index_col=1)
print(data)
订单编号 数量 金额
产品
投影仪 d001 5台 2000
马克笔 d002 5盒 300
打印机 d003 1台 298
点钞机 d004 1台 349
复印纸 d005 2箱 100
条码纸 d006 6卷 34
usecols=[2]:指定第二列
import pandas as pd
data = pd.read_excel('订单表.xlsx', sheet_name=3, usecols=[2])
print(data)
数量
0 5台
1 5盒
2 1台
3 1台
4 2箱
5 6卷
指定多列
import pandas as pd
data = pd.read_excel('订单表.xlsx', sheet_name=3, usecols=[1, 3])
print(data)
产品 金额
0 投影仪 2000
1 马克笔 300
2 打印机 298
3 点钞机 349
4 复印纸 100
5 条码纸 34
数据如下:
[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-j1SHxY8y-1637655972909)(C:\Users\14051\AppData\Roaming\Typora\typora-user-images\image-20211114192949607.png)]
import pandas as pd
data = pd.read_csv('订单表.csv')
print(data)
订单编号 产品 数量 金额
0 d001 投影仪 5台 2000
1 d002 马克笔 5盒 300
2 d003 打印机 1台 298
3 d004 点钞机 1台 349
4 d005 复印纸 2箱 100
5 d006 条码纸 6卷 34
nrows参数可以指定显示的行数
nrows=3时
import pandas as pd
data = pd.read_csv('订单表.csv', nrows=3)
print(data)
订单编号 产品 数量 金额
0 d001 投影仪 5台 2000
1 d002 马克笔 5盒 300
2 d003 打印机 1台 298
head()函数中参数为空默认前5行
import pandas as pd
data = pd.read_excel('订单表.xlsx', sheet_name=3)
print(data.head())
订单编号 产品 数量 金额
0 d001 投影仪 5台 2000
1 d002 马克笔 5盒 300
2 d003 打印机 1台 298
3 d004 点钞机 1台 349
4 d005 复印纸 2箱 100
指定head(3)时如下
import pandas as pd
data = pd.read_excel('订单表.xlsx', sheet_name=3)
print(data.head(3))
订单编号 产品 数量 金额
0 d001 投影仪 5台 2000
1 d002 马克笔 5盒 300
2 d003 打印机 1台 298
numpy模块也是shape
import pandas as pd
data = pd.read_excel('订单表.xlsx', sheet_name=3)
print(data)
print(data.shape)
订单编号 产品 数量 金额
0 d001 投影仪 5台 2000
1 d002 马克笔 5盒 300
2 d003 打印机 1台 298
3 d004 点钞机 1台 349
4 d005 复印纸 2箱 100
5 d006 条码纸 6卷 34
(6, 4)
import pandas as pd
data = pd.read_excel('订单表.xlsx', sheet_name = 3)
print(data.info())
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 6 entries, 0 to 5
Data columns (total 4 columns):
# Column Non-Null Count Dtype
--- ------ -------------- -----
0 订单编号 6 non-null object
1 产品 6 non-null object
2 数量 6 non-null object
3 金额 6 non-null int64
dtypes: int64(1), object(3)
memory usage: 320.0+ bytes
None
查看特定列的书库类型
import pandas as pd
data = pd.read_excel('订单表.xlsx', sheet_name = 3)
print(data['金额'].dtype)
int64
特定列数据类型转换
import pandas as pd
data = pd.read_excel('订单表.xlsx', sheet_name = 3)
data['金额'] = data['金额'].astype('float64')
print(data)
print(data['金额'].dtype)
订单编号 产品 数量 金额
0 d001 投影仪 5台 2000.0
1 d002 马克笔 5盒 300.0
2 d003 打印机 1台 298.0
3 d004 点钞机 1台 349.0
4 d005 复印纸 2箱 100.0
5 d006 条码纸 6卷 34.0
float64
先查看一下所有数据
import pandas as pd
data = pd.read_excel('订单表.xlsx', sheet_name=3, index_col=0) #index_col指定行标签
print(data)
产品 数量 金额
订单编号
d001 投影仪 5台 2000
d002 马克笔 5盒 300
d003 打印机 1台 298
d004 点钞机 1台 349
d005 复印纸 2箱 100
d006 条码纸 6卷 34
loc()函数加行标签指定行
import pandas as pd
data = pd.read_excel('订单表.xlsx', sheet_name=3, index_col=0)
print(data.loc['d001'])
产品 投影仪
数量 5台
金额 2000
Name: d001, dtype: object
iloc()函数加索引指定行号
import pandas as pd
data = pd.read_excel('订单表.xlsx', sheet_name=3, index_col=0)
print(data.iloc[2])
产品 打印机
数量 1台
金额 298
Name: d003, dtype: object
与单行相比,结果显示的格式不一样了
import pandas as pd
data = pd.read_excel('订单表.xlsx', sheet_name=3, index_col=0)
print(data.loc[['d002', 'd004']])
产品 数量 金额
订单编号
d002 马克笔 5盒 300
d004 点钞机 1台 349
iloc()挑选:
import pandas as pd
data = pd.read_excel('订单表.xlsx', sheet_name=3, index_col=0)
print(data.iloc[[1, 5]])
产品 数量 金额
订单编号
d002 马克笔 5盒 300
d006 条码纸 6卷 34
产品 数量 金额
或者给出区间
import pandas as pd
data = pd.read_excel('订单表.xlsx', sheet_name=3, index_col=0)
print(data.iloc[1:5])
产品 数量 金额
订单编号
d002 马克笔 5盒 300
d003 打印机 1台 298
d004 点钞机 1台 349
d005 复印纸 2箱 100
import pandas as pd
data = pd.read_excel('订单表.xlsx', sheet_name=3, index_col=0)
a = data['金额'] < 300 #挑选金额>300的行
print(data[a])
产品 数量 金额
订单编号
d003 打印机 1台 298
d005 复印纸 2箱 100
d006 条码纸 6卷 34
import pandas as pd
data = pd.read_excel('订单表.xlsx', sheet_name=3)
print(data['产品'])
0 投影仪
1 马克笔
2 打印机
3 点钞机
4 复印纸
5 条码纸
Name: 产品, dtype: object
挑选数据要么标签,要么索引挑选
import pandas as pd
data = pd.read_excel('订单表.xlsx', sheet_name=3)
print(data[['产品', '金额']])
产品 金额
0 投影仪 2000
1 马克笔 300
2 打印机 298
3 点钞机 349
4 复印纸 100
5 条码纸 34
或者
import pandas as pd
data = pd.read_excel('订单表.xlsx', sheet_name=3)
print(data.iloc[:, [1,3]])
产品 金额
0 投影仪 2000
1 马克笔 300
2 打印机 298
3 点钞机 349
4 复印纸 100
5 条码纸 34
或者写成区间
import pandas as pd
data = pd.read_excel('订单表.xlsx', sheet_name=3)
print(data.iloc[:, 1:3])
产品 数量
0 投影仪 5台
1 马克笔 5盒
2 打印机 1台
3 点钞机 1台
4 复印纸 2箱
5 条码纸 6卷
标签挑选
import pandas as pd
data = pd.read_excel('订单表.xlsx', sheet_name=3, index_col=0)
data1 = data.loc[['d001', 'd005'], ['产品', '金额']]
print(data1)
产品 金额
订单编号
d001 投影仪 2000
d005 复印纸 100
或者索引挑选
import pandas as pd
data = pd.read_excel('订单表.xlsx', sheet_name=3, index_col=0)
data2 = data.iloc[[2, 4], [0, 2]]
print(data2)
产品 金额
订单编号
d003 打印机 298
d005 复印纸 100
先查看一下数据
import pandas as pd
data = pd.read_excel('订单表.xlsx', sheet_name=3)
print(data)
订单编号 产品 数量 金额
0 d001 投影仪 5台 2000
1 d002 马克笔 5盒 300
2 d003 打印机 1台 298
3 d004 点钞机 1台 349
4 d005 复印纸 2箱 100
5 d006 条码纸 6卷 34
set_index()设置行标签
import pandas as pd
data = pd.read_excel('订单表.xlsx', sheet_name=3)
print(data.set_index('订单编号'))
产品 数量 金额
订单编号
d001 投影仪 5台 2000
d002 马克笔 5盒 300
d003 打印机 1台 298
d004 点钞机 1台 349
d005 复印纸 2箱 100
d006 条码纸 6卷 34
或者用字典一对一修改
import pandas as pd
data = pd.read_excel('订单表.xlsx', sheet_name=3)
data = data.rename(columns={'订单编号':'编号', '产品':'产品名称', '数量':'订单数量', '金额':'订单金额'},
index = {0:'A', 1:'B', 2:'C', 3:'D', 4:'E', 5:'F'})
print(data)
编号 产品名称 订单数量 订单金额
A d001 投影仪 5台 2000
B d002 马克笔 5盒 300
C d003 打印机 1台 298
D d004 点钞机 1台 349
E d005 复印纸 2箱 100
F d006 条码纸 6卷 34
columns、index参数分别修改列、行标签
import pandas as pd
data = pd.read_excel('订单表.xlsx', sheet_name=3)
data.columns = ['编号', '产品名称', '订单数量', '订单金额']
data.index = ['A', 'B', 'C', 'D', 'E', 'F']
print(data)
编号 产品名称 订单数量 订单金额
A d001 投影仪 5台 2000
B d002 马克笔 5盒 300
C d003 打印机 1台 298
D d004 点钞机 1台 349
E d005 复印纸 2箱 100
F d006 条码纸 6卷 34
[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-a6QKIoie-1637655972912)(C:\Users\14051\AppData\Roaming\Typora\typora-user-images\image-20211123110431201.png)]
import pandas as pd
data = pd.read_excel('产品统计表.xlsx')
print(data)
编号 产品 成本价(元/个) 销售价(元/个) 数量(个) 成本(元) 收入(元) 利润(元)
0 a001 背包 16 65 60 960 3900 2940
1 a002 钱包 90 187 50 4500 9350 4850
2 a003 背包 16 65 23 368 1495 1127
3 a004 手提包 36 147 26 936 3822 2886
4 a005 钱包 90 187 78 7020 14586 7566
5 a006 单肩包 58 124 63 3654 7812 4158
6 a007 单肩包 58 124 58 3364 7192 3828
isin()函数查看表中是否有该值
data1 = data.isin(['a005','钱包'])
print(data1)
编号 产品 成本价(元/个) 销售价(元/个) 数量(个) 成本(元) 收入(元) 利润(元)
0 False False False False False False False False
1 False True False False False False False False
2 False False False False False False False False
3 False False False False False False False False
4 True True False False False False False False
5 False False False False False False False False
6 False False False False False False False False
查看特定列是否有该值
data2 = data['产品'].isin(['手提包'])
print(data2)
0 False
1 False
2 False
3 True
4 False
5 False
6 False
Name: 产品, dtype: bool
import pandas as pd
data = pd.read_excel('产品统计表.xlsx')
data.replace('背包', '挎包') #并没有替换
print(data)
编号 产品 成本价(元/个) 销售价(元/个) 数量(个) 成本(元) 收入(元) 利润(元)
0 a001 背包 16 65 60 960 3900 2940
1 a002 钱包 90 187 50 4500 9350 4850
2 a003 背包 16 65 23 368 1495 1127
3 a004 手提包 36 147 26 936 3822 2886
4 a005 钱包 90 187 78 7020 14586 7566
5 a006 单肩包 58 124 63 3654 7812 4158
6 a007 单肩包 58 124 58 3364 7192 3828
可以看出上述代码并没有替换,那怎么替换呢?
1. 一对一替换
import pandas as pd
data = pd.read_excel('产品统计表.xlsx')
data.replace('背包', '挎包', inplace = True)
print(data)
编号 产品 成本价(元/个) 销售价(元/个) 数量(个) 成本(元) 收入(元) 利润(元)
0 a001 挎包 16 65 60 960 3900 2940
1 a002 钱包 90 187 50 4500 9350 4850
2 a003 挎包 16 65 23 368 1495 1127
3 a004 手提包 36 147 26 936 3822 2886
4 a005 钱包 90 187 78 7020 14586 7566
5 a006 单肩包 58 124 63 3654 7812 4158
6 a007 单肩包 58 124 58 3364 7192 3828
2. 多对一替换
import pandas as pd
data = pd.read_excel('产品统计表.xlsx')
data.replace(['背包', '手提包'], '挎包', inplace = True)
print(data)
编号 产品 成本价(元/个) 销售价(元/个) 数量(个) 成本(元) 收入(元) 利润(元)
0 a001 挎包 16 65 60 960 3900 2940
1 a002 钱包 90 187 50 4500 9350 4850
2 a003 挎包 16 65 23 368 1495 1127
3 a004 挎包 36 147 26 936 3822 2886
4 a005 钱包 90 187 78 7020 14586 7566
5 a006 单肩包 58 124 63 3654 7812 4158
6 a007 单肩包 58 124 58 3364 7192 3828
3. 多对多替换
import pandas as pd
data = pd.read_excel('产品统计表.xlsx')
data.replace({'背包':'挎包', 16:39, 65:88}, inplace = True)
print(data)
编号 产品 成本价(元/个) 销售价(元/个) 数量(个) 成本(元) 收入(元) 利润(元)
0 a001 挎包 39 88 60 960 3900 2940
1 a002 钱包 90 187 50 4500 9350 4850
2 a003 挎包 39 88 23 368 1495 1127
3 a004 手提包 36 147 26 936 3822 2886
4 a005 钱包 90 187 78 7020 14586 7566
5 a006 单肩包 58 124 63 3654 7812 4158
6 a007 单肩包 58 124 58 3364 7192 3828
末尾插入一列
import pandas as pd
data = pd.read_excel('产品统计表.xlsx')
data['品牌'] = ['AM', 'DE', 'SR', 'AM', 'TY', 'DE', 'UD']
print(data)
编号 产品 成本价(元/个) 销售价(元/个) 数量(个) 成本(元) 收入(元) 利润(元) 品牌
0 a001 背包 16 65 60 960 3900 2940 AM
1 a002 钱包 90 187 50 4500 9350 4850 DE
2 a003 背包 16 65 23 368 1495 1127 SR
3 a004 手提包 36 147 26 936 3822 2886 AM
4 a005 钱包 90 187 78 7020 14586 7566 TY
5 a006 单肩包 58 124 63 3654 7812 4158 DE
6 a007 单肩包 58 124 58 3364 7192 3828 UD
指定插入到哪列
import pandas as pd
data = pd.read_excel('产品统计表.xlsx')
data.insert(2, '品牌', ['AM', 'DE', 'SR', 'AM', 'TY', 'DE', 'UD'])
print(data)
编号 产品 品牌 成本价(元/个) 销售价(元/个) 数量(个) 成本(元) 收入(元) 利润(元)
0 a001 背包 AM 16 65 60 960 3900 2940
1 a002 钱包 DE 90 187 50 4500 9350 4850
2 a003 背包 SR 16 65 23 368 1495 1127
3 a004 手提包 AM 36 147 26 936 3822 2886
4 a005 钱包 TY 90 187 78 7020 14586 7566
5 a006 单肩包 DE 58 124 63 3654 7812 4158
6 a007 单肩包 UD 58 124 58 3364 7192 3828
axis参数可以指定删除行还是删除列
1. 删除列
指定标签删除
import pandas as pd
data = pd.read_excel('产品统计表.xlsx')
a = data.drop(['成本价(元/个)', '成本(元)'], axis = 1)
print(a)
编号 产品 销售价(元/个) 数量(个) 收入(元) 利润(元)
0 a001 背包 65 60 3900 2940
1 a002 钱包 187 50 9350 4850
2 a003 背包 65 23 1495 1127
3 a004 手提包 147 26 3822 2886
4 a005 钱包 187 78 14586 7566
5 a006 单肩包 124 63 7812 4158
6 a007 单肩包 124 58 7192 3828
指定索引删除
import pandas as pd
data = pd.read_excel('产品统计表.xlsx')
b = data.drop(data.columns[[2, 5]], axis = 1)
print(b)
编号 产品 销售价(元/个) 数量(个) 收入(元) 利润(元)
0 a001 背包 65 60 3900 2940
1 a002 钱包 187 50 9350 4850
2 a003 背包 65 23 1495 1127
3 a004 手提包 147 26 3822 2886
4 a005 钱包 187 78 14586 7566
5 a006 单肩包 124 63 7812 4158
6 a007 单肩包 124 58 7192 3828
方法三
import pandas as pd
data = pd.read_excel('产品统计表.xlsx')
c = data.drop(columns = ['成本价(元/个)', '成本(元)'])
print(c)
编号 产品 销售价(元/个) 数量(个) 收入(元) 利润(元)
0 a001 背包 65 60 3900 2940
1 a002 钱包 187 50 9350 4850
2 a003 背包 65 23 1495 1127
3 a004 手提包 147 26 3822 2886
4 a005 钱包 187 78 14586 7566
5 a006 单肩包 124 63 7812 4158
6 a007 单肩包 124 58 7192 3828
2. 删除行
指定行标签删除
import pandas as pd
data = pd.read_excel('产品统计表.xlsx', index_col = 0)
a = data.drop(['a001', 'a004'], axis = 0)
print(a)
产品 成本价(元/个) 销售价(元/个) 数量(个) 成本(元) 收入(元) 利润(元)
编号
a002 钱包 90 187 50 4500 9350 4850
a003 背包 16 65 23 368 1495 1127
a005 钱包 90 187 78 7020 14586 7566
a006 单肩包 58 124 63 3654 7812 4158
a007 单肩包 58 124 58 3364 7192 3828
指定索引删除
import pandas as pd
data = pd.read_excel('产品统计表.xlsx', index_col = 0)
b = data.drop(data.index[[0, 4]], axis = 0)
print(b)
产品 成本价(元/个) 销售价(元/个) 数量(个) 成本(元) 收入(元) 利润(元)
编号
a002 钱包 90 187 50 4500 9350 4850
a003 背包 16 65 23 368 1495 1127
a004 手提包 36 147 26 936 3822 2886
a006 单肩包 58 124 63 3654 7812 4158
a007 单肩包 58 124 58 3364 7192 3828
方法三:
import pandas as pd
data = pd.read_excel('产品统计表.xlsx', index_col = 0)
c = data.drop(index = ['a001', 'a004'])
print(c)
产品 成本价(元/个) 销售价(元/个) 数量(个) 成本(元) 收入(元) 利润(元)
编号
a002 钱包 90 187 50 4500 9350 4850
a003 背包 16 65 23 368 1495 1127
a005 钱包 90 187 78 7020 14586 7566
a006 单肩包 58 124 63 3654 7812 4158
a007 单肩包 58 124 58 3364 7192 3828
先查看所有数据
import pandas as pd
data = pd.read_excel('产品统计表1.xlsx')
print(data)
编号 产品 成本价(元/个) 销售价(元/个) 数量(个) 成本(元) 收入(元) 利润(元)
0 a001 背包 16.0 65 60 960.0 3900 2940
1 a002 钱包 90.0 187 50 4500.0 9350 4850
2 a003 背包 NaN 65 23 368.0 1495 1127
3 a004 手提包 36.0 147 26 936.0 3822 2886
4 a005 钱包 90.0 187 78 7020.0 14586 7566
5 a006 单肩包 58.0 124 63 3654.0 7812 4158
6 a007 单肩包 58.0 124 58 NaN 7192 3828
info()函数查看数据类型,还可以查看是否有缺失值
import pandas as pd
data = pd.read_excel('产品统计表1.xlsx')
data.info()
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 7 entries, 0 to 6
Data columns (total 8 columns):
# Column Non-Null Count Dtype
--- ------ -------------- -----
0 编号 7 non-null object
1 产品 7 non-null object
2 成本价(元/个) 6 non-null float64
3 销售价(元/个) 7 non-null int64
4 数量(个) 7 non-null int64
5 成本(元) 6 non-null float64
6 收入(元) 7 non-null int64
7 利润(元) 7 non-null int64
dtypes: float64(2), int64(4), object(2)
memory usage: 576.0+ bytes
isnull()函数查看是否有缺失值
在numpy模块中用isnan()函数
import pandas as pd
data = pd.read_excel('产品统计表1.xlsx')
a = data.isnull()
print(a)
编号 产品 成本价(元/个) 销售价(元/个) 数量(个) 成本(元) 收入(元) 利润(元)
0 False False False False False False False False
1 False False False False False False False False
2 False False True False False False False False
3 False False False False False False False False
4 False False False False False False False False
5 False False False False False False False False
6 False False False False False True False False
删除有缺失值的行
import pandas as pd
data = pd.read_excel('产品统计表1.xlsx')
b = data.dropna()
print(b)
编号 产品 成本价(元/个) 销售价(元/个) 数量(个) 成本(元) 收入(元) 利润(元)
0 a001 背包 16.0 65 60 960.0 3900 2940
1 a002 钱包 90.0 187 50 4500.0 9350 4850
3 a004 手提包 36.0 147 26 936.0 3822 2886
4 a005 钱包 90.0 187 78 7020.0 14586 7566
5 a006 单肩包 58.0 124 63 3654.0 7812 4158
删除整行都为缺失值的行:需要指定how参数
import pandas as pd
data = pd.read_excel('产品统计表1.xlsx')
c = data.dropna(how = 'all')
print(c)
编号 产品 成本价(元/个) 销售价(元/个) 数量(个) 成本(元) 收入(元) 利润(元)
0 a001 背包 16.0 65 60 960.0 3900 2940
1 a002 钱包 90.0 187 50 4500.0 9350 4850
2 a003 背包 NaN 65 23 368.0 1495 1127
3 a004 手提包 36.0 147 26 936.0 3822 2886
4 a005 钱包 90.0 187 78 7020.0 14586 7566
5 a006 单肩包 58.0 124 63 3654.0 7812 4158
6 a007 单肩包 58.0 124 58 NaN 7192 3828
import pandas as pd
data = pd.read_excel('产品统计表1.xlsx')
d = data.fillna(0) # 缺失值全部填充为0
print(d)
编号 产品 成本价(元/个) 销售价(元/个) 数量(个) 成本(元) 收入(元) 利润(元)
0 a001 背包 16.0 65 60 960.0 3900 2940
1 a002 钱包 90.0 187 50 4500.0 9350 4850
2 a003 背包 0.0 65 23 368.0 1495 1127
3 a004 手提包 36.0 147 26 936.0 3822 2886
4 a005 钱包 90.0 187 78 7020.0 14586 7566
5 a006 单肩包 58.0 124 63 3654.0 7812 4158
6 a007 单肩包 58.0 124 58 0.0 7192 3828
不同列的缺失值设置不同的填充值
import pandas as pd
data = pd.read_excel('产品统计表1.xlsx')
e = data.fillna({'成本价(元/个)':16, '成本(元)':3364})
print(e)
编号 产品 成本价(元/个) 销售价(元/个) 数量(个) 成本(元) 收入(元) 利润(元)
0 a001 背包 16.0 65 60 960.0 3900 2940
1 a002 钱包 90.0 187 50 4500.0 9350 4850
2 a003 背包 16.0 65 23 368.0 1495 1127
3 a004 手提包 36.0 147 26 936.0 3822 2886
4 a005 钱包 90.0 187 78 7020.0 14586 7566
5 a006 单肩包 58.0 124 63 3654.0 7812 4158
6 a007 单肩包 58.0 124 58 3364.0 7192 3828
import pandas as pd
data = pd.read_excel('产品统计表2.xlsx')
print(data)
编号 产品 成本价(元/个) 销售价(元/个) 数量(个) 成本(元) 收入(元) 利润(元)
0 a001 背包 16 65 60 960 3900 2940
1 a002 钱包 90 187 50 4500 9350 4850
2 a003 背包 16 65 23 368 1495 1127
3 a004 手提包 36 147 26 936 3822 2886
4 a004 手提包 36 147 26 936 3822 2886 # 重复
5 a005 钱包 90 187 78 7020 14586 7566
6 a006 单肩包 58 124 63 3654 7812 4158
a = data.drop_duplicates()
print(a)
编号 产品 成本价(元/个) 销售价(元/个) 数量(个) 成本(元) 收入(元) 利润(元)
0 a001 背包 16 65 60 960 3900 2940
1 a002 钱包 90 187 50 4500 9350 4850
2 a003 背包 16 65 23 368 1495 1127
3 a004 手提包 36 147 26 936 3822 2886
5 a005 钱包 90 187 78 7020 14586 7566
6 a006 单肩包 58 124 63 3654 7812 4158
默认保留第一个重复值所在的行,删除其他重复值所在的行
b = data.drop_duplicates(subset = '产品')
print(b)
编号 产品 成本价(元/个) 销售价(元/个) 数量(个) 成本(元) 收入(元) 利润(元)
0 a001 背包 16 65 60 960 3900 2940
1 a002 钱包 90 187 50 4500 9350 4850
3 a004 手提包 36 147 26 936 3822 2886
6 a006 单肩包 58 124 63 3654 7812 4158
保留第一个重复值所在的行
c = data.drop_duplicates(subset = '产品', keep = 'first')
print(c)
编号 产品 成本价(元/个) 销售价(元/个) 数量(个) 成本(元) 收入(元) 利润(元)
0 a001 背包 16 65 60 960 3900 2940
1 a002 钱包 90 187 50 4500 9350 4850
3 a004 手提包 36 147 26 936 3822 2886
6 a006 单肩包 58 124 63 3654 7812 4158
保留最后一个重复值所在的行
d = data.drop_duplicates(subset = '产品', keep = 'last')
print(d)
编号 产品 成本价(元/个) 销售价(元/个) 数量(个) 成本(元) 收入(元) 利润(元)
2 a003 背包 16 65 23 368 1495 1127
4 a004 手提包 36 147 26 936 3822 2886
5 a005 钱包 90 187 78 7020 14586 7566
6 a006 单肩包 58 124 63 3654 7812 4158
是重复的就删除
e = data.drop_duplicates(subset = '产品', keep = False)
print(e)
编号 产品 成本价(元/个) 销售价(元/个) 数量(个) 成本(元) 收入(元) 利润(元)
6 a006 单肩包 58 124 63 3654 7812 4158
f = data['产品'].unique()
print(f)
['背包' '钱包' '手提包' '单肩包']
import pandas as pd
data = pd.read_excel('产品统计表2.xlsx')
a = data.sort_values(by = '数量(个)', ascending = True) #第一个参数指定列 第二个参数指定升序
print(a)
编号 产品 成本价(元/个) 销售价(元/个) 数量(个) 成本(元) 收入(元) 利润(元)
2 a003 背包 16 65 23 368 1495 1127
3 a004 手提包 36 147 26 936 3822 2886
4 a004 手提包 36 147 26 936 3822 2886
1 a002 钱包 90 187 50 4500 9350 4850
0 a001 背包 16 65 60 960 3900 2940
6 a006 单肩包 58 124 63 3654 7812 4158
5 a005 钱包 90 187 78 7020 14586 7566
降序如下
b = data.sort_values(by = '数量(个)', ascending = False)
print(b)
编号 产品 成本价(元/个) 销售价(元/个) 数量(个) 成本(元) 收入(元) 利润(元)
5 a005 钱包 90 187 78 7020 14586 7566
6 a006 单肩包 58 124 63 3654 7812 4158
0 a001 背包 16 65 60 960 3900 2940
1 a002 钱包 90 187 50 4500 9350 4850
3 a004 手提包 36 147 26 936 3822 2886
4 a004 手提包 36 147 26 936 3822 2886
2 a003 背包 16 65 23 368 1495 1127
c = data['利润(元)'].rank(method = 'average', ascending = False) #指定利润降序排序 有重复值则返回重复值的平均排名
print(c)
0 4.0
1 2.0
2 7.0
3 5.5
4 5.5
5 1.0
6 3.0
Name: 利润(元), dtype: float64
参数指定first时,表示在数据有重复值时,越先出现的数据排名越靠前
d = data['利润(元)'].rank(method = 'first', ascending = False)
print(d)
0 4.0
1 2.0
2 7.0
3 5.0
4 6.0
5 1.0
6 3.0
Name: 利润(元), dtype: float64
获取产品为单肩包的行数据
import pandas as pd
data = pd.read_excel('产品统计表.xlsx')
a = data[data['产品'] == '单肩包'] #获取产品为单肩包的行数据
print(a)
编号 产品 成本价(元/个) 销售价(元/个) 数量(个) 成本(元) 收入(元) 利润(元)
5 a006 单肩包 58 124 63 3654 7812 4158
6 a007 单肩包 58 124 58 3364 7192 3828
获取数量>60的行数据
b = data[data['数量(个)'] > 60] # 获取数量>60的行数据
print(b)
编号 产品 成本价(元/个) 销售价(元/个) 数量(个) 成本(元) 收入(元) 利润(元)
4 a005 钱包 90 187 78 7020 14586 7566
5 a006 单肩包 58 124 63 3654 7812 4158
获取产品为单肩包 且 数量>60 的行数据
c = data[(data['产品'] == '单肩包') & (data['数量(个)'] > 60)]
print(c)
编号 产品 成本价(元/个) 销售价(元/个) 数量(个) 成本(元) 收入(元) 利润(元)
5 a006 单肩包 58 124 63 3654 7812 4158
获取产品为单肩包 或 数量>60 的行数据
d = data[(data['产品'] == '单肩包') | (data['数量(个)'] > 60)]
print(d)
编号 产品 成本价(元/个) 销售价(元/个) 数量(个) 成本(元) 收入(元) 利润(元)
4 a005 钱包 90 187 78 7020 14586 7566
5 a006 单肩包 58 124 63 3654 7812 4158
6 a007 单肩包 58 124 58 3364 7192 3828
import pandas as pd
data = pd.read_excel('产品统计表.xlsx')
a = data.T
print(a)
0 1 2 3 4 5 6
编号 a001 a002 a003 a004 a005 a006 a007
产品 背包 钱包 背包 手提包 钱包 单肩包 单肩包
成本价(元/个) 16 90 16 36 90 58 58
销售价(元/个) 65 187 65 147 187 124 124
数量(个) 60 50 23 26 78 63 58
成本(元) 960 4500 368 936 7020 3654 3364
收入(元) 3900 9350 1495 3822 14586 7812 7192
利润(元) 2940 4850 1127 2886 7566 4158 3828
import pandas as pd
data = pd.read_excel('产品统计表3.xlsx')
print(data)
编号 产品 销售价(元/个) 数量(个) 收入(元)
0 a001 背包 65 60 3900
1 a002 钱包 187 50 9350
2 a003 单肩包 124 58 7192
stack()函数转换成树形结构
a = data.stack()
print(a)
0 编号 a001
产品 背包
销售价(元/个) 65
数量(个) 60
收入(元) 3900
1 编号 a002
产品 钱包
销售价(元/个) 187
数量(个) 50
收入(元) 9350
2 编号 a003
产品 单肩包
销售价(元/个) 124
数量(个) 58
收入(元) 7192
dtype: object
import pandas as pd
data1 = pd.read_excel('产品表.xlsx', sheet_name = 0) #第0张工作簿
data2 = pd.read_excel('产品表.xlsx',sheet_name = 1) #第1张工作簿
print(data1)
print(data2)
员工编号 员工姓名 员工性别
0 a001 张三 男
1 a002 李四 女
2 a003 王五 男
3 a004 赵六 男
员工编号 员工姓名 销售业绩
0 a001 张三 360000
1 a002 李四 458000
2 a003 王五 369000
3 a004 赵六 450000
4 a005 钱七 500000
a = pd.merge(data1, data2) #行取交集 列取并集
print(a)
员工编号 员工姓名 员工性别 销售业绩
0 a001 张三 男 360000
1 a002 李四 女 458000
2 a003 王五 男 369000
3 a004 赵六 男 450000
how参数指定外连接
b = pd.merge(data1, data2, how = 'outer') #行取并集 列取并集
print(b)
员工编号 员工姓名 员工性别 销售业绩
0 a001 张三 男 360000
1 a002 李四 女 458000
2 a003 王五 男 369000
3 a004 赵六 男 450000
4 a005 钱七 NaN 500000
on参数指定按哪一列合并
c = pd.merge(data1, data2, on = '员工姓名')
print(c)
员工编号_x 员工姓名 员工性别 员工编号_y 销售业绩
0 a001 张三 男 a001 360000
1 a002 李四 女 a002 458000
2 a003 王五 男 a003 369000
3 a004 赵六 男 a004 450000
concat()函数采用全连接的方式,没有的数设置为缺失值
d = pd.concat([data1, data2])
print(d)
员工编号 员工姓名 员工性别 销售业绩
0 a001 张三 男 NaN
1 a002 李四 女 NaN
2 a003 王五 男 NaN
3 a004 赵六 男 NaN
0 a001 张三 NaN 360000.0
1 a002 李四 NaN 458000.0
2 a003 王五 NaN 369000.0
3 a004 赵六 NaN 450000.0
4 a005 钱七 NaN 500000.0
重置行标签
e = pd.concat([data1, data2], ignore_index = True) #重置行标签
print(e)
员工编号 员工姓名 员工性别 销售业绩
0 a001 张三 男 NaN
1 a002 李四 女 NaN
2 a003 王五 男 NaN
3 a004 赵六 男 NaN
4 a001 张三 NaN 360000.0
5 a002 李四 NaN 458000.0
6 a003 王五 NaN 369000.0
7 a004 赵六 NaN 450000.0
8 a005 钱七 NaN 500000.0
效果与concat()一样
f = data1.append(data2)
print(f)
员工编号 员工姓名 员工性别 销售业绩
0 a001 张三 男 NaN
1 a002 李四 女 NaN
2 a003 王五 男 NaN
3 a004 赵六 男 NaN
0 a001 张三 NaN 360000.0
1 a002 李四 NaN 458000.0
2 a003 王五 NaN 369000.0
3 a004 赵六 NaN 450000.0
4 a005 钱七 NaN 500000.0
末尾添加行元素
g = data1.append({'员工编号':'a005', '员工姓名':'孙七', '员工性别':'男'}, ignore_index = True)
print(g)
员工编号 员工姓名 员工性别
0 a001 张三 男
1 a002 李四 女
2 a003 王五 男
3 a004 赵六 男
4 a005 孙七 男
1. 求和:sum()
import pandas as pd
data = pd.read_excel('产品统计表.xlsx')
a = data.sum()
print(a)
编号 a001a002a003a004a005a006a007
产品 背包钱包背包手提包钱包单肩包单肩包
成本价(元/个) 364
销售价(元/个) 899
数量(个) 358
成本(元) 20802
收入(元) 48157
利润(元) 27355
dtype: object
指定列求和
b = data['利润(元)'].sum()
print(b)
27355
2. 求平均值:mean()
c = data.mean()
print(c)
成本价(元/个) 52.000000
销售价(元/个) 128.428571
数量(个) 51.142857
成本(元) 2971.714286
收入(元) 6879.571429
利润(元) 3907.857143
dtype: float64
指定列求均值
d = data['利润(元)'].mean()
print(d)
3907.8571428571427
3. 求最值:max()
e = data.max()
print(e)
编号 a007
产品 钱包
成本价(元/个) 90
销售价(元/个) 187
数量(个) 78
成本(元) 7020
收入(元) 14586
利润(元) 7566
dtype: object
指定列求最值
f = data['利润(元)'].max()
print(f)
7566
import pandas as pd
data = pd.read_excel('产品统计表.xlsx')
a = data.describe()
print(a)
成本价(元/个) 销售价(元/个) 数量(个) 成本(元) 收入(元) 利润(元)
count 7.000000 7.000000 7.000000 7.000000 7.000000 7.000000
mean 52.000000 128.428571 51.142857 2971.714286 6879.571429 3907.857143
std 31.112698 50.483849 20.053500 2391.447659 4352.763331 2002.194498
min 16.000000 65.000000 23.000000 368.000000 1495.000000 1127.000000
25% 26.000000 94.500000 38.000000 948.000000 3861.000000 2913.000000
50% 58.000000 124.000000 58.000000 3364.000000 7192.000000 3828.000000
75% 74.000000 167.000000 61.500000 4077.000000 8581.000000 4504.000000
max 90.000000 187.000000 78.000000 7020.000000 14586.000000 7566.000000
获取单列的
b = data['利润(元)'].describe()
print(b)
count 7.000000
mean 3907.857143
std 2002.194498
min 1127.000000
25% 2913.000000
50% 3828.000000
75% 4504.000000
max 7566.000000
Name: 利润(元), dtype: float64
import pandas as pd
data = pd.read_excel('相关性分析.xlsx')
print(data)
代理商编号 年销售额(万元) 年广告费投入额(万元) 成本费用(万元) 管理费用(万元)
0 A-001 20.5 15.6 2.00 0.80
1 A-003 24.5 16.7 2.54 0.94
2 B-002 31.8 20.4 2.96 0.88
3 B-006 34.9 22.6 3.02 0.79
4 B-008 39.4 25.7 3.14 0.84
5 C-003 44.5 28.8 4.00 0.80
6 C-004 49.6 32.1 6.84 0.85
7 C-007 54.8 35.9 5.60 0.91
8 D-006 58.5 38.7 6.45 0.90
corr()函数获取相关系数
a = data.corr()
print(a)
年销售额(万元) 年广告费投入额(万元) 成本费用(万元) 管理费用(万元)
年销售额(万元) 1.000000 0.996275 0.914428 0.218317
年广告费投入额(万元) 0.996275 1.000000 0.918404 0.223187
成本费用(万元) 0.914428 0.918404 1.000000 0.284286
管理费用(万元) 0.218317 0.223187 0.284286 1.000000
获取指定列与其他列的相关系数
b = data.corr()['年销售额(万元)']
print(b)
年销售额(万元) 1.000000
年广告费投入额(万元) 0.996275
成本费用(万元) 0.914428
管理费用(万元) 0.218317
Name: 年销售额(万元), dtype: float64
[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-46g9qgQw-1637655972913)(C:\Users\14051\AppData\Roaming\Typora\typora-user-images\image-20211123135643804.png)]
import pandas as pd
data = pd.read_excel('产品统计表.xlsx')
a = data.groupby('产品') #根据产品列分组
print(a)
<pandas.core.groupby.generic.DataFrameGroupBy object at 0x00000213943E4640>
groupby()函数返回的是一个DataFrameBy对象,该对象包含分组后的数据,但是不能直观地显示出来。
b = data.groupby('产品').sum()
print(b)
成本价(元/个) 销售价(元/个) 数量(个) 成本(元) 收入(元) 利润(元)
产品
单肩包 116 248 121 7018 15004 7986
手提包 36 147 26 936 3822 2886
背包 32 130 83 1328 5395 4067
钱包 180 374 128 11520 23936 12416
分组后获取指定列的汇总情况
c = data.groupby('产品')['利润(元)'].sum()
print(c)
产品
单肩包 7986
手提包 2886
背包 4067
钱包 12416
Name: 利润(元), dtype: int64
获取多列的汇总情况
d = data.groupby('产品')['数量(个)', '利润(元)'].sum()
print(d)
数量(个) 利润(元)
产品
单肩包 121 7986
手提包 26 2886
背包 83 4067
钱包 128 12416
import pandas as pd
data = pd.read_excel('产品统计表.xlsx')
a = pd.pivot_table(data, values = '利润(元)', index = '产品', aggfunc = 'sum') #data.groupby('产品')['利润(元)'].sum() 同样功能
print(a)
利润(元)
产品
单肩包 7986
手提包 2886
背包 4067
钱包 12416
获取多列的情况
b = pd.pivot_table(data, values = ['利润(元)', '成本(元)'], index = '产品', aggfunc = 'sum')
print(b)
利润(元) 成本(元)
产品
单肩包 7986 7018
手提包 2886 936
背包 4067 1328
钱包 12416 11520
ta = pd.read_excel(‘相关性分析.xlsx’)
print(data)
```python
代理商编号 年销售额(万元) 年广告费投入额(万元) 成本费用(万元) 管理费用(万元)
0 A-001 20.5 15.6 2.00 0.80
1 A-003 24.5 16.7 2.54 0.94
2 B-002 31.8 20.4 2.96 0.88
3 B-006 34.9 22.6 3.02 0.79
4 B-008 39.4 25.7 3.14 0.84
5 C-003 44.5 28.8 4.00 0.80
6 C-004 49.6 32.1 6.84 0.85
7 C-007 54.8 35.9 5.60 0.91
8 D-006 58.5 38.7 6.45 0.90
corr()函数获取相关系数
a = data.corr()
print(a)
年销售额(万元) 年广告费投入额(万元) 成本费用(万元) 管理费用(万元)
年销售额(万元) 1.000000 0.996275 0.914428 0.218317
年广告费投入额(万元) 0.996275 1.000000 0.918404 0.223187
成本费用(万元) 0.914428 0.918404 1.000000 0.284286
管理费用(万元) 0.218317 0.223187 0.284286 1.000000
获取指定列与其他列的相关系数
b = data.corr()['年销售额(万元)']
print(b)
年销售额(万元) 1.000000
年广告费投入额(万元) 0.996275
成本费用(万元) 0.914428
管理费用(万元) 0.218317
Name: 年销售额(万元), dtype: float64
[外链图片转存中…(img-46g9qgQw-1637655972913)]
import pandas as pd
data = pd.read_excel('产品统计表.xlsx')
a = data.groupby('产品') #根据产品列分组
print(a)
<pandas.core.groupby.generic.DataFrameGroupBy object at 0x00000213943E4640>
groupby()函数返回的是一个DataFrameBy对象,该对象包含分组后的数据,但是不能直观地显示出来。
b = data.groupby('产品').sum()
print(b)
成本价(元/个) 销售价(元/个) 数量(个) 成本(元) 收入(元) 利润(元)
产品
单肩包 116 248 121 7018 15004 7986
手提包 36 147 26 936 3822 2886
背包 32 130 83 1328 5395 4067
钱包 180 374 128 11520 23936 12416
分组后获取指定列的汇总情况
c = data.groupby('产品')['利润(元)'].sum()
print(c)
产品
单肩包 7986
手提包 2886
背包 4067
钱包 12416
Name: 利润(元), dtype: int64
获取多列的汇总情况
d = data.groupby('产品')['数量(个)', '利润(元)'].sum()
print(d)
数量(个) 利润(元)
产品
单肩包 121 7986
手提包 26 2886
背包 83 4067
钱包 128 12416
import pandas as pd
data = pd.read_excel('产品统计表.xlsx')
a = pd.pivot_table(data, values = '利润(元)', index = '产品', aggfunc = 'sum') #data.groupby('产品')['利润(元)'].sum() 同样功能
print(a)
利润(元)
产品
单肩包 7986
手提包 2886
背包 4067
钱包 12416
获取多列的情况
b = pd.pivot_table(data, values = ['利润(元)', '成本(元)'], index = '产品', aggfunc = 'sum')
print(b)
利润(元) 成本(元)
产品
单肩包 7986 7018
手提包 2886 936
背包 4067 1328
钱包 12416 11520