Python人工智能20个小时玩转NLP自然语言处理

课程内容:
1. Pytorch基础知识
2. 自然语言处理入门
3. 文本预处理
4. HMM和CRF
5. RNN, LSTM, GRU
6. Transformer

适用人群:
1、对自然语言处理技术感兴趣的在校生和应届生。
2、希望从事人工智能行业高薪工作的在职人员。
3、对自然语言处理技术感兴趣的相关人员。

基础课程主讲内容包括:
第一章: Pytorch基础知识
1. Pytorch基础元素和函数
2. Pytorch构建神经网络案例
3. Pytorch构建分类器案例
第二章: 自然语言处理入门
1. 介绍NLP的发展历史, 关键时间节点
2. 介绍NLP的行业主流应用和当前热点
第三章: 文本预处理
1. 文本处理的基本方法
2. 文本张量的表示方法
3. 文本的数据分析方法
4. 文本的特征处理方法
5. 文本的数据增强
6. 新闻主题分类任务的案例
第四章: HMM和CRF
1. 介绍HMM的原理和特点
2. 介绍CRF的原理和特点
第五章: RNN系列模型
1. RNN模型介绍和代码实践
2. LSTM模型介绍和代码实践
3. GRU模型介绍和代码实践
4. 注意力机制原理介绍和代码实践
5. 人名分类器的案例
6. 英译法任务的案例
第六章: Transformer
1. 认识Transformer的架构
2. 详解Transformer的输入部分和代码实现
3. 详解Transformer的编码器部分和代码实现
4. 详解Transformer的解码器部分和代码实现
5. 详解Transformer的输出部分和代码实现
6. 基于Transformer架构的copy任务测试
7. 基于Transformer构建语言模型的案例

课程内容:
1. Pytorch基础知识
2. 自然语言处理入门
3. 文本预处理
4. HMM和CRF
5. RNN, LSTM, GRU
6. Transformer

适用人群:
1、对自然语言处理技术感兴趣的在校生和应届生。
2、希望从事人工智能行业高薪工作的在职人员。
3、对自然语言处理技术感兴趣的相关人员。

基础课程主讲内容包括:
第一章: Pytorch基础知识
1. Pytorch基础元素和函数
2. Pytorch构建神经网络案例
3. Pytorch构建分类器案例
第二章: 自然语言处理入门
1. 介绍NLP的发展历史, 关键时间节点
2. 介绍NLP的行业主流应用和当前热点
第三章: 文本预处理
1. 文本处理的基本方法
2. 文本张量的表示方法
3. 文本的数据分析方法
4. 文本的特征处理方法
5. 文本的数据增强
6. 新闻主题分类任务的案例
第四章: HMM和CRF
1. 介绍HMM的原理和特点
2. 介绍CRF的原理和特点
第五章: RNN系列模型
1. RNN模型介绍和代码实践
2. LSTM模型介绍和代码实践
3. GRU模型介绍和代码实践
4. 注意力机制原理介绍和代码实践
5. 人名分类器的案例
6. 英译法任务的案例
第六章: Transformer
1. 认识Transformer的架构
2. 详解Transformer的输入部分和代码实现
3. 详解Transformer的编码器部分和代码实现
4. 详解Transformer的解码器部分和代码实现
5. 详解Transformer的输出部分和代码实现
6. 基于Transformer架构的copy任务测试
7. 基于Transformer构建语言模型的案例

课程内容:
1. Pytorch基础知识
2. 自然语言处理入门
3. 文本预处理
4. HMM和CRF
5. RNN, LSTM, GRU
6. Transformer

适用人群:
1、对自然语言处理技术感兴趣的在校生和应届生。
2、希望从事人工智能行业高薪工作的在职人员。
3、对自然语言处理技术感兴趣的相关人员。

基础课程主讲内容包括:
第一章: Pytorch基础知识
1. Pytorch基础元素和函数
2. Pytorch构建神经网络案例
3. Pytorch构建分类器案例
第二章: 自然语言处理入门
1. 介绍NLP的发展历史, 关键时间节点
2. 介绍NLP的行业主流应用和当前热点
第三章: 文本预处理
1. 文本处理的基本方法
2. 文本张量的表示方法
3. 文本的数据分析方法
4. 文本的特征处理方法
5. 文本的数据增强
6. 新闻主题分类任务的案例
第四章: HMM和CRF
1. 介绍HMM的原理和特点
2. 介绍CRF的原理和特点
第五章: RNN系列模型
1. RNN模型介绍和代码实践
2. LSTM模型介绍和代码实践
3. GRU模型介绍和代码实践
4. 注意力机制原理介绍和代码实践
5. 人名分类器的案例
6. 英译法任务的案例
第六章: Transformer
1. 认识Transformer的架构
2. 详解Transformer的输入部分和代码实现
3. 详解Transformer的编码器部分和代码实现
4. 详解Transformer的解码器部分和代码实现
5. 详解Transformer的输出部分和代码实现
6. 基于Transformer架构的copy任务测试
7. 基于Transformer构建语言模型的案例

Python人工智能20个小时玩转NLP自然语言处理-吾爱学习资源

你可能感兴趣的:(人工智能,python,自然语言处理)