神经网络控制技术是一项复杂的系统控制技术,一般应用在变频器的控制中,它是通过对系统的辨识、运算后对变频器进行控制的一种新技术。
而且神经网络控制可以同时控制多个变频器,所以应用在多个变频器级联控制中比较合适。
谷歌人工智能写作项目:小发猫
人工神经网络(ArtificialNeuralNetwork,即ANN),是20世纪80年代以来人工智能领域兴起的研究热点rfid。
它从信息处理角度对人脑神经元网络进行抽象,建立某种简单模型,按不同的连接方式组成不同的网络。在工程与学术界也常直接简称为神经网络或类神经网络。
神经网络是一种运算模型,由大量的节点(或称神经元)之间相互联接构成。每个节点代表一种特定的输出函数,称为激励函数(activationfunction)。
每两个节点间的连接都代表一个对于通过该连接信号的加权值,称之为权重,这相当于人工神经网络的记忆。网络的输出则依网络的连接方式,权重值和激励函数的不同而不同。
而网络自身通常都是对自然界某种算法或者函数的逼近,也可能是对一种逻辑策略的表达。
最近十多年来,人工神经网络的研究工作不断深入,已经取得了很大的进展,其在模式识别、智能机器人、自动控制、预测估计、生物、医学、经济等领域已成功地解决了许多现代计算机难以解决的实际问题,表现出了良好的智能特性。
神经网络有多种分类方式,例如,按网络性能可分为连续型与离散型网络,确定型与随机型网络:按网络拓扑结构可分为前向神经网络与反馈神经网络。本章土要简介前向神经网络、反馈神经网络和自组织特征映射神经网络。
前向神经网络是数据挖掘中广为应用的一种网络,其原理或算法也是很多神经网络模型的基础。径向基函数神经网络就是一种前向型神经网络。Hopfield神经网络是反馈网络的代表。
Hvpfi}ld网络的原型是一个非线性动力学系统,目前,已经在联想记忆和优化计算中得到成功应用。基本特征非线性关系是自然界的普遍特性。大脑的智慧就是一种非线性现象。
人工神经元处于激活或抑制二种不同的状态,这种行为在数学上表现为一种非线性关系。具有阈值的神经元构成的网络具有更好的性能,可以提高容错性和存储容量。一个神经网络通常由多个神经元广泛连接而成。
一个系统的整体行为不仅取决于单个神经元的特征,而且可能主要由单元之间的相互作用、相互连接所决定。通过单元之间的大量连接模拟大脑的非局限性。联想记忆是非局限性的典型例子。
以上内容参考:百度百科-人工神经网络。
通常,神经网络都是通过编程实现的,因为神经网络本质上是种数学模型。但是,当前已经有硬件实现方案,即FPGA现场可编程门阵列来实现。
人工神经网络作为一种新型的信息处理系统,由于基于传统软件实现,存在并行程度低和速度慢的缺点,使神经网络的实现不能满足实时性的要求,造成了理论研究与实际应用脱节。
另外,用软件实现神经网络所需计算机体积庞大,不适合嵌入式场合的应用。而神经网络的硬件实现的最大特点就是体现了系统的并行性,处理速度快,易于满足实时性要求。
另外,算法的复杂程度以及在实际工程中应用的可行性仍需要通过硬件的实现效果来检验。因此,神经网络的硬件实现意义重大。
FPGA现场可编程门阵列是一个具有大量通用逻辑单元的器件,并且它的内部逻辑可以根据实际需要进行相应的改变。这种可重新配置的结构特征非常适合实现神经网络。
神经网络好处不是说它有什么好的特性易于控制,而是当人们遇到传统的控制方法控制效果的不好的非线性、不确定对象的问题,即人们面临控制对象难以建模的时候,神经网络强大的作用就显现出来了。
主要的网络有BP,RBF,ART等神经网络,这三种网络机构原理各不相同,你用百度文库,里面有相应的介绍。
人工神经网络(ArtificialNeuralNetworks,ANN)系统是20世纪40年代后出现的。
它是由众多的神经元可调的连接权值连接而成,具有大规模并行处理、分布式信息存储、良好的自组织自学习能力等特点。
BP(BackPropagation)算法又称为误差反向传播算法,是人工神经网络中的一种监督式的学习算法。
BP神经网络算法在理论上可以逼近任意函数,基本的结构由非线性变化单元组成,具有很强的非线性映射能力。
而且网络的中间层数、各层的处理单元数及网络的学习系数等参数可根据具体情况设定,灵活性很大,在优化、信号处理与模式识别、智能控制、故障诊断等许多领域都有着广泛的应用前景。
人工神经元的研究起源于脑神经元学说。19世纪末,在生物、生理学领域,Waldeger等人创建了神经元学说。人们认识到复杂的神经系统是由数目繁多的神经元组合而成。
大脑皮层包括有100亿个以上的神经元,每立方毫米约有数万个,它们互相联结形成神经网络,通过感觉器官和神经接受来自身体内外的各种信息,传递至中枢神经系统内,经过对信息的分析和综合,再通过运动神经发出控制信息,以此来实现机体与内外环境的联系,协调全身的各种机能活动。
神经元也和其他类型的细胞一样,包括有细胞膜、细胞质和细胞核。但是神经细胞的形态比较特殊,具有许多突起,因此又分为细胞体、轴突和树突三部分。细胞体内有细胞核,突起的作用是传递信息。
树突是作为引入输入信号的突起,而轴突是作为输出端的突起,它只有一个。树突是细胞体的延伸部分,它由细胞体发出后逐渐变细,全长各部位都可与其他神经元的轴突末梢相互联系,形成所谓“突触”。
在突触处两神经元并未连通,它只是发生信息传递功能的结合部,联系界面之间间隙约为(15~50)×10米。突触可分为兴奋性与抑制性两种类型,它相应于神经元之间耦合的极性。
每个神经元的突触数目正常,最高可达10个。各神经元之间的连接强度和极性有所不同,并且都可调整、基于这一特性,人脑具有存储信息的功能。利用大量神经元相互联接组成人工神经网络可显示出人的大脑的某些特征。
人工神经网络是由大量的简单基本元件——神经元相互联接而成的自适应非线性动态系统。每个神经元的结构和功能比较简单,但大量神经元组合产生的系统行为却非常复杂。
人工神经网络反映了人脑功能的若干基本特性,但并非生物系统的逼真描述,只是某种模仿、简化和抽象。
与数字计算机比较,人工神经网络在构成原理和功能特点等方面更加接近人脑,它不是按给定的程序一步一步地执行运算,而是能够自身适应环境、总结规律、完成某种运算、识别或过程控制。
人工神经网络首先要以一定的学习准则进行学习,然后才能工作。现以人工神经网络对于写“A”、“B”两个字母的识别为例进行说明,规定当“A”输入网络时,应该输出“1”,而当输入为“B”时,输出为“0”。
所以网络学习的准则应该是:如果网络作出错误的的判决,则通过网络的学习,应使得网络减少下次犯同样错误的可能性。
首先,给网络的各连接权值赋予(0,1)区间内的随机值,将“A”所对应的图象模式输入给网络,网络将输入模式加权求和、与门限比较、再进行非线性运算,得到网络的输出。
在此情况下,网络输出为“1”和“0”的概率各为50%,也就是说是完全随机的。这时如果输出为“1”(结果正确),则使连接权值增大,以便使网络再次遇到“A”模式输入时,仍然能作出正确的判断。
如果输出为“0”(即结果错误),则把网络连接权值朝着减小综合输入加权值的方向调整,其目的在于使网络下次再遇到“A”模式输入时,减小犯同样错误的可能性。
如此操作调整,当给网络轮番输入若干个手写字母“A”、“B”后,经过网络按以上学习方法进行若干次学习后,网络判断的正确率将大大提高。
这说明网络对这两个模式的学习已经获得了成功,它已将这两个模式分布地记忆在网络的各个连接权值上。当网络再次遇到其中任何一个模式时,能够作出迅速、准确的判断和识别。
一般说来,网络中所含的神经元个数越多,则它能记忆、识别的模式也就越多。(1)人类大脑有很强的自适应与自组织特性,后天的学习与训练可以开发许多各具特色的活动功能。
如盲人的听觉和触觉非常灵敏;聋哑人善于运用手势;训练有素的运动员可以表现出非凡的运动技巧等等。普通计算机的功能取决于程序中给出的知识和能力。显然,对于智能活动要通过总结编制程序将十分困难。
人工神经网络也具有初步的自适应与自组织能力。在学习或训练过程中改变突触权重值,以适应周围环境的要求。同一网络因学习方式及内容不同可具有不同的功能。
人工神经网络是一个具有学习能力的系统,可以发展知识,以致超过设计者原有的知识水平。
通常,它的学习训练方式可分为两种,一种是有监督或称有导师的学习,这时利用给定的样本标准进行分类或模仿;另一种是无监督学习或称无为导师学习,这时,只规定学习方式或某些规则,则具体的学习内容随系统所处环境(即输入信号情况)而异,系统可以自动发现环境特征和规律性,具有更近似人脑的功能。
(2)泛化能力泛化能力指对没有训练过的样本,有很好的预测能力和控制能力。特别是,当存在一些有噪声的样本,网络具备很好的预测能力。
(3)非线性映射能力当对系统对于设计人员来说,很透彻或者很清楚时,则一般利用数值分析,偏微分方程等数学工具建立精确的数学模型,但当对系统很复杂,或者系统未知,系统信息量很少时,建立精确的数学模型很困难时,神经网络的非线性映射能力则表现出优势,因为它不需要对系统进行透彻的了解,但是同时能达到输入与输出的映射关系,这就大大简化设计的难度。
(4)高度并行性并行性具有一定的争议性。承认具有并行性理由:神经网络是根据人的大脑而抽象出来的数学模型,由于人可以同时做一些事,所以从功能的模拟角度上看,神经网络也应具备很强的并行性。
多少年以来,人们从医学、生物学、生理学、哲学、信息学、计算机科学、认知学、组织协同学等各个角度企图认识并解答上述问题。
在寻找上述问题答案的研究过程中,这些年来逐渐形成了一个新兴的多学科交叉技术领域,称之为“神经网络”。神经网络的研究涉及众多学科领域,这些领域互相结合、相互渗透并相互推动。
不同领域的科学家又从各自学科的兴趣与特色出发,提出不同的问题,从不同的角度进行研究。
下面将人工神经网络与通用的计算机工作特点来对比一下:若从速度的角度出发,人脑神经元之间传递信息的速度要远低于计算机,前者为毫秒量级,而后者的频率往往可达几百兆赫。
但是,由于人脑是一个大规模并行与串行组合处理系统,因而,在许多问题上可以作出快速判断、决策和处理,其速度则远高于串行结构的普通计算机。
人工神经网络的基本结构模仿人脑,具有并行处理特征,可以大大提高工作速度。人脑存贮信息的特点为利用突触效能的变化来调整存贮内容,也即信息存贮在神经元之间连接强度的分布上,存贮区与计算机区合为一体。
虽然人脑每日有大量神经细胞死亡(平均每小时约一千个),但不影响大脑的正常思维活动。
普通计算机是具有相互独立的存贮器和运算器,知识存贮与数据运算互不相关,只有通过人编出的程序使之沟通,这种沟通不能超越程序编制者的预想。元器件的局部损坏及程序中的微小错误都可能引起严重的失常。
心理学家和认知科学家研究神经网络的目的在于探索人脑加工、储存和搜索信息的机制,弄清人脑功能的机理,建立人类认知过程的微结构理论。
生物学、医学、脑科学专家试图通过神经网络的研究推动脑科学向定量、精确和理论化体系发展,同时也寄希望于临床医学的新突破;信息处理和计算机科学家研究这一问题的目的在于寻求新的途径以解决不能解决或解决起来有极大困难的大量问题,构造更加逼近人脑功能的新一代计算机。
人工神经网络早期的研究工作应追溯至上世纪40年代。下面以时间顺序,以著名的人物或某一方面突出的研究成果为线索,简要介绍人工神经网络的发展历史。
1943年,心理学家W·Mcculloch和数理逻辑学家W·Pitts在分析、总结神经元基本特性的基础上首先提出神经元的数学模型。此模型沿用至今,并且直接影响着这一领域研究的进展。
因而,他们两人可称为人工神经网络研究的先驱。1945年冯·诺依曼领导的设计小组试制成功存储程序式电子计算机,标志着电子计算机时代的开始。
1948年,他在研究工作中比较了人脑结构与存储程序式计算机的根本区别,提出了以简单神经元构成的再生自动机网络结构。
但是,由于指令存储式计算机技术的发展非常迅速,迫使他放弃了神经网络研究的新途径,继续投身于指令存储式计算机技术的研究,并在此领域作出了巨大贡献。
虽然,冯·诺依曼的名字是与普通计算机联系在一起的,但他也是人工神经网络研究的先驱之一。50年代末,F·Rosenblatt设计制作了“感知机”,它是一种多层的神经网络。
这项工作首次把人工神经网络的研究从理论探讨付诸工程实践。当时,世界上许多实验室仿效制作感知机,分别应用于文字识别、声音识别、声纳信号识别以及学习记忆问题的研究。
然而,这次人工神经网络的研究高潮未能持续很久,许多人陆续放弃了这方面的研究工作,这是因为当时数字计算机的发展处于全盛时期,许多人误以为数字计算机可以解决人工智能、模式识别、专家系统等方面的一切问题,使感知机的工作得不到重视;其次,当时的电子技术工艺水平比较落后,主要的元件是电子管或晶体管,利用它们制作的神经网络体积庞大,价格昂贵,要制作在规模上与真实的神经网络相似是完全不可能的;另外,在1968年一本名为《感知机》的著作中指出线性感知机功能是有限的,它不能解决如异感这样的基本问题,而且多层网络还不能找到有效的计算方法,这些论点促使大批研究人员对于人工神经网络的前景失去信心。
60年代末期,人工神经网络的研究进入了低潮。另外,在60年代初期,Widrow提出了自适应线性元件网络,这是一种连续取值的线性加权求和阈值网络。后来,在此基础上发展了非线性多层自适应网络。
当时,这些工作虽未标出神经网络的名称,而实际上就是一种人工神经网络模型。随着人们对感知机兴趣的衰退,神经网络的研究沉寂了相当长的时间。
80年代初期,模拟与数字混合的超大规模集成电路制作技术提高到新的水平,完全付诸实用化,此外,数字计算机的发展在若干应用领域遇到困难。这一背景预示,向人工神经网络寻求出路的时机已经成熟。
美国的物理学家Hopfield于1982年和1984年在美国科学院院刊上发表了两篇关于人工神经网络研究的论文,引起了巨大的反响。人们重新认识到神经网络的威力以及付诸应用的现实性。
随即,一大批学者和研究人员围绕着Hopfield提出的方法展开了进一步的工作,形成了80年代中期以来人工神经网络的研究热潮。
1985年,Ackley、Hinton和Sejnowski将模拟退火算法应用到神经网络训练中,提出了Boltzmann机,该算法具有逃离极值的优点,但是训练时间需要很长。
1986年,Rumelhart、Hinton和Williams提出了多层前馈神经网络的学习算法,即BP算法。它从证明的角度推导算法的正确性,是学习算法有理论依据。从学习算法角度上看,是一个很大的进步。
1988年,Broomhead和Lowe第一次提出了径向基网络:RBF网络。总体来说,神经网络经历了从高潮到低谷,再到高潮的阶段,充满曲折的过程。