See LCS again
时间限制:1000 ms | 内存限制:65535 KB
难度:3
描述
There are A, B two sequences, the number of elements in the sequence is n、m;
Each element in the sequence are different and less than 100000.
Calculate the length of the longest common subsequence of A and B.
输入
The input has multicases.Each test case consists of three lines;
The first line consist two integers n, m (1 < = n, m < = 100000);
The second line with n integers, expressed sequence A;
The third line with m integers, expressed sequence B;
输出
For each set of test cases, output the length of the longest common subsequence of A and B, in a single line.
样例输入
5 4
1 2 6 5 4
1 3 5 4
样例输出
3
上传者
TC_胡仁东
解题:一种LCS转LCS的nlogn的算法。是严格上升的LCS。
首先是LCS,我们把a序列中的每个元素在b中出现的位置保存起来,再按照降序排列,排列后再代入a的每个对应元素,那就转化为了求这个新的序列的最长上升子序列了。如:a[] = {a, b, c,} b[] = {a,b,c,b,a,d},那么a中的a,b,c在b中出现的位置分别就是{0,4},{1,3},{2}。分别按降序排列后代入a序列就是{4,0,2,3,1},之所以要按照降序排列,目的就是为了让每个元素只取到一次。
接下来的问题就是要求最长升序子序列问题了,也就是求LIS。
特殊情况下,会退化得很严重。
1 #include <iostream> 2 #include <cstdio> 3 #include <cstring> 4 #include <cmath> 5 #include <algorithm> 6 #include <climits> 7 #include <vector> 8 #include <queue> 9 #include <cstdlib> 10 #include <string> 11 #include <set> 12 #include <stack> 13 #define LL long long 14 #define pii pair<int,int> 15 #define INF 0x3f3f3f3f 16 using namespace std; 17 struct info{ 18 int num,pos; 19 }; 20 int n,m,tot,sa[100010],sc[200010],q[200010],head,tail; 21 info sb[100010]; 22 bool cmp(const info &x,const info &y){ 23 return x.num < y.num; 24 } 25 int bsearch(int lt,int rt,int val){ 26 int mid,pos = -1; 27 while(lt <= rt){ 28 int mid = (lt+rt)>>1; 29 if(val <= sb[mid].num){ 30 pos = mid; 31 rt = mid-1; 32 }else lt = mid+1; 33 } 34 return pos; 35 } 36 int binsearch(int lt,int rt,int val){ 37 while(lt <= rt){ 38 int mid = (lt+rt)>>1; 39 if(q[mid] < val) lt = mid+1; 40 else rt = mid-1; 41 } 42 return lt; 43 } 44 int main() { 45 while(~scanf("%d %d",&n,&m)){ 46 head = tail = tot = 0; 47 for(int i = 1; i <= n; i++) scanf("%d",sa+i); 48 for(int i = 1; i <= m; i++){ 49 scanf("%d",&sb[i].num); 50 sb[i].pos = i; 51 } 52 sort(sb+1,sb+m+1,cmp); 53 for(int i = 1; i <= n; i++){ 54 int tmp = bsearch(1,m,sa[i]); 55 while(tmp > 0 && sb[tmp].num == sa[i]) sc[tot++] = sb[tmp++].pos; 56 } 57 for(int i = 0; i < tot; i++){ 58 if(head == tail || q[head-1] < sc[i]){ 59 q[head++] = sc[i]; 60 }else{ 61 int tmp = binsearch(tail,head-1,sc[i]); 62 q[tmp] = sc[i]; 63 } 64 } 65 printf("%d\n",head-tail); 66 } 67 return 0; 68 }