三个等式的方程组matlab求解,用matlab求解符号方程及符号方程组

符号方程的求解

MATLAB7.0中的符号计算可以求解线性方程(组)、代数方程的符号解、非线性符号方程(组)、常微分方程(组),求解这些方程(组)是通过调用solve函数实现的,如求解代数方程的符号解调用solve函数的格式是solve('eq')、solve('eq','v')、[x1,x2,…xn]=solve('eq1','eq2',…'eqn')等,求解非线性符号方程是调用优化工具箱的fsolve函数,调用格式有fsolve(f,x0)、fsolve(f,x0,options)、[x,fv]=fsolve(f,x0,options,p1,p2…)等,而解常微分方程(组)则是调用dsolve函数,调用的格式有[x1,x2,…]=dsolve('eq1,eq2,…','cond1,cond2…','v')。现将各函数的调用格式列于下表(表5—1),在各个实例中说明各种格式的用法。

表5—1  符号方程求解的solve函数调用格式

调用格式

说明

solve('eq')

对系统默认的符号变量求方程eq=0的根。

solve('eq','v')

对指定变量v求解方程eq(v)=0的根。

[x1,x2,…xn]=solve('eq1','eq2',…'eqn')

对系统默认的一组符号变量求方程组eqi=0(i=1,2,…n)的根。

[v1,v2,…vn]=solve('eq1','eq2',…'eqn','v1','v2',…'vn')

对指定的一组符号变量v1,v2,…vn求方程组eqi=0(i=1,2,…n)的根。

linsolve(A,B)

求符号线性方程(组)AX=B的解。相当于X=sym(A)\sym(B)

fsolve(f,x0)

从x0开始搜索f=0的解。

fsolve(f,x0,options)

根据指定的优化参数options从x0开始搜索f=0的解。

fsolve(f,x0,options,p1,p2…)

优化参数option不是默认时,在p1,p2…条件下求f=0解。优化参数option可取的值有0(默认)和1

[x,fv]=fsolve(f,x0,options,p1,p2…)

优化参数option为默认时,在p1,p2…条件下求f=0解,并输出根和目标函数值。

[x,fv,ex]=fsolve(f,x0,options,p1,p2…)

优化参数option为默认时,在p1,p2…条件下求f=0解,并输出根和目标函数值,并通过exitflag返回函数的退出状态。

[x,fv,ex,out]=fsolve(f,x0,options,p1,p2…)

优化参数option为默认时,在p1,p2…条件下求f=0解,并给出优化信息。

[x,fv,ex,out,jac]=fsolve(f,x0,options,p1,p2…)

优化参数option为默认时,在p1,p2…条件下求f=0解,输出值为x处的jacobian函数。

[x1,x2,…]=dsolve('eq1,eq2,…','cond1,cond2…','v')

在初始条件为cond1,cond2…时求微分方程组eq1,eq2,…对指定变量v的特解。

[x1,x2,…]=dsolve('eq1','eq2',…,'cond1','cond2'…,'v')

同[x1,x2,…]=dsolve('eq1,eq2,…','cond1,cond2…','v')

一、代数方程的符号解

MATLAB7.0中求代数方程的符号解是通过调用solve函数实现的。用solve函数求解一个代数方程时的调用格式一般是:

solve('代数方程','未知变量')或x=solve('代数方程','未知变量')

当未知变量为系统默认变量时,未知变量的输入可以省略。当求解由n个代数方程组成的方程组时调用的格式是:

[未知变量组]=solve('代数方程组','未知变量组')

未知变量组中的各变量之间,代数方程组的各方程之间用逗号分隔,如果各未知变量是由系统默认的,则未知变量组的输入可以省略。

实例1、求解高次符号方程0818b9ca8b590ca3270a3433284dd417.png和方程0818b9ca8b590ca3270a3433284dd417.png对y的解。

>> syms x y z a b                             %定义符号变量

>> solve(x^4-3*a*x^2+4*b)                   %求解高次方程

ans =

1/2*(6*a+2*(9*a^2-16*b)^(1/2))^(1/2)

-1/2*(6*a+2*(9*a^2-16*b)^(1/2))^(1/2)

1/2*(6*a-2*(9*a^2-16*b)^(1/2))^(1/2)

-1/2*(6*a-2*(9*a^2-16*b)^(1/2))^(1/2)

>> solve(x^3+2*a*x*y-3*b*y^2,y)             %对指定变量求解方程

ans =

1/6/b*(2*a+2*(a^2+3*b*x)^(1/2))*x

1/6/b*(2*a-2*(a^2+3*b*x)^(1/2))*x

实例2、求解多元高次方程组0818b9ca8b590ca3270a3433284dd417.png

>> [x,y]=solve('x^3+2*x*y-3*y^2-2','x^3-3*x*y+y^2+5')   %求解多元高次方程组

x =

1.8061893129091900210106914427639+1.1685995398225344682988775209345*i

.51233671712308192620449202726936+1.0694475803263816285960240820218*i

-1.2247760300322719472151834700333+.35066213508454219362158900429401*i

-1.2247760300322719472151834700333-.35066213508454219362158900429401*i

.51233671712308192620449202726936-1.0694475803263816285960240820218*i

1.8061893129091900210106914427639-1.1685995398225344682988775209345*i

y =

1.8086294126483514370835126464657+1.9432962587476317909683476452237*i

.17307087932198664953847299268063-.78620181218420502898925154555661*i

-.61451279197033808662198563914677-.89207785198625780793629825881329*i

-.61451279197033808662198563914677+.89207785198625780793629825881329*i

.17307087932198664953847299268063+.78620181218420502898925154555661*i

1.8086294126483514370835126464657-1.9432962587476317909683476452237*i

实例3、求解方程组0818b9ca8b590ca3270a3433284dd417.png的解。

>> [x,y,z]=solve('x-2*y-4','x^2-2*x*y+y-z','x^2-y*z+z')

x =

29/5-1/5*721^(1/2)

29/5+1/5*721^(1/2)

y =

9/10-1/10*721^(1/2)

9/10+1/10*721^(1/2)

z =

241/10-9/10*721^(1/2)

241/10+9/10*721^(1/2)

实例4、求解超越方程0818b9ca8b590ca3270a3433284dd417.png的解。

>> solve('x*2^x-1')                  %求解超越方程

ans =

1/log(2)*lambertw(log(2))

注:lambertw是一个函数,lambertw(x)表示方程w*exp(w) = x的解w。其数值可以在命令窗口输入该函数得到。

>> lambertw(log(2))

ans =

0.       4444

二、符号线性方程(组)的求解

符号线性方程(组)的求解与数值线性方程(组)的求解方法相同,采用矩阵左除或函数linsolve,格式为:X=A\B 或 X=sym(A)\sym(B) 或X=linsolve(A,B)。其中A为线性方程组的系数矩阵,B为方程右侧的常数列矩阵。

实例5、求符号线性方程组0818b9ca8b590ca3270a3433284dd417.png的符号解。

>> A=sym('[1 2 3;-1 9 2;2 0 3]');          %定义符号矩阵A

>> B=[a;b;1];                         %定义符号矩阵B

>> x=A\B                            %求解方程

x =

6/13*b+23/13-27/13*a

3/13*b+5/13-7/13*a

-4/13*b-11/13+18/13*a

三、非线性符号方程的求解

非线性符号方程(组)F(X)=0中X是一个向量,求解显示的结果也是一个向量。它不仅可以用调用solve函数求解,也可以调用函数fsolve求解,而函数fsolve不是MATLAB符号工具箱的函数,它位于优化工具箱内。

实例6、求解非线性符号方程组0818b9ca8b590ca3270a3433284dd417.png,用solve函数和fsolve函数起始点为x0=[0;0]各自求解。

(1)solve函数求解

>> syms x1 x2                                        %定义符号变量

>> [x1,x2]=solve('x1-3*x2=sin(x1)','2*x1+x2=cos(x2)','x1','x2') %求解方程组

x1 =

.49662797440907460178544085171994

x2 =

.67214622395756734146654770697884e-2

(2)fsolve函数求解

先在文件编辑窗口编写如下M文件,并存于系统的work目录下。

function F=myfun(x)

F=[x(1)-3*x(2)-sin(x(1));2*x(1)+x(2)-cos(x(2))];

然后在命令窗口求解:

>> x0=[0;0];                                  %设定求解初值

>> options=optimset('Display','iter');               %设定优化条件

>> [x,fv]=fsolve(@myfun,x0,options)              %优化求解

%MATLAB显示的优化过程

Norm of      First-order   Trust-region

Iteration  Func-count            f(x)          step         optimality    radius

0          3               1                            2           1

1          6      0.000423308            0.5         0.0617           1

2          9      5.17424e-010     0.00751433      4.55e-005         1.25

3         12      9.99174e-022    1.15212e-005      9.46e-011         1.25

Optimization terminated: first-order optimality is less than options.TolFun.

x =

0.4966

0.0067

fv =

1.0e-010 *

0.3161

0.0018

四、常微分方程的符号解

含有自变量、未知函数和未知函数导数(或微分)的等式叫微分方程。描述自变量与函数关系的等式叫微分方程的初始条件。适合微分方程的函数叫微分方程的解。没有初始条件而求得的解叫微分方程的通解,通解中会包含有与方程阶数相同个数的积分常数C1、C2等;有初始条件且满足初始条件的解叫微分方程的特解,特解一般不含有积分常数。在MATLAB中,用dsolve函数求解微分方程或微分方程组,dsolve函数参数的输入共有三部分,微分方程、初始条件和自变量。格式是:

dsolve('微分方程','初始条件','自变量')

微分方程部分的输入与MATLAB符号表达式的输入基本相同,微分或导数的输入是用Dy、D2y、D3y、…来表示y的一阶导数0818b9ca8b590ca3270a3433284dd417.png0818b9ca8b590ca3270a3433284dd417.png、二阶导数0818b9ca8b590ca3270a3433284dd417.png0818b9ca8b590ca3270a3433284dd417.png、三阶导数0818b9ca8b590ca3270a3433284dd417.png0818b9ca8b590ca3270a3433284dd417.png、…。如果自变量是系统默认的,则自变量输入部分可省略。dsolve函数的输出部分是该方程(组)的解列表,如果dsolve函数找不到解析解,则系统显示一则错误信息。

实例7、求解微分方程组0818b9ca8b590ca3270a3433284dd417.png在无初始条件和有初始条件0818b9ca8b590ca3270a3433284dd417.png下的解。

(1)无初始条件求解

>> [x,y]=dsolve('D2x+Dy+3*x=cos(2*t)','D2y-4*Dx+3*y=sin(2*t)','t')

x =

1/5*cos(2*t)-1/2*C1*cos(t)+1/2*C2*sin(t)+1/2*C3*cos(3*t)-1/2*C4*sin(3*t)

y =

3/5*sin(2*t)+C1*sin(t)+C2*cos(t)+C3*sin(3*t)+C4*cos(3*t)

(2)有初始条件求解

>> [x,y]=dsolve('D2x+Dy+3*x=cos(2*t)','D2y-4*Dx+3*y=sin(2*t)','Dx(0)=1/5','x(0)=0','Dy(0)=6/5','y(0)=0','t')

x =

1/5*cos(2*t)-3/20*cos(t)+1/20*sin(t)-1/20*cos(3*t)+1/20*sin(3*t)

y =

3/5*sin(2*t)+3/10*sin(t)+1/10*cos(t)-1/10*sin(3*t)-1/10*cos(3*t)

你可能感兴趣的:(三个等式的方程组matlab求解,用matlab求解符号方程及符号方程组)