当物理内存和交换空间都被用完时,如果还有进程来申请内存,内核将触发OOM killer,其行为如下:
1.检查文件/proc/sys/vm/panic_on_oom,如果里面的值为2,那么系统一定会触发panic
2.如果/proc/sys/vm/panic_on_oom的值为1,那么系统有可能触发panic(见后面的介绍)
3.如果/proc/sys/vm/panic_on_oom的值为0,或者上一步没有触发panic,那么内核继续检查文件/proc/sys/vm/oom_kill_allocating_task
3.如果/proc/sys/vm/oom_kill_allocating_task为1,那么内核将kill掉当前申请内存的进程
4.如果/proc/sys/vm/oom_kill_allocating_task为0,内核将检查每个进程的分数,分数最高的进程将被kill掉(见后面介绍)
进程被kill掉之后,如果/proc/sys/vm/oom_dump_tasks为1,且系统的rlimit中设置了core文件大小,将会由/proc/sys/kernel/core_pattern里面指定的程序生成core dump文件,这个文件里将包含
pid, uid, tgid, vm size, rss, nr_ptes, nr_pmds, swapents, oom_score_adj
score, name等内容,拿到这个core文件之后,可以做一些分析,看为什么这个进程被选中kill掉。
这里可以看看ubuntu默认的配置:
#OOM后不panic dev@ubuntu:~$ cat /proc/sys/vm/panic_on_oom 0 #OOM后kill掉分数最高的进程 dev@ubuntu:~$ cat /proc/sys/vm/oom_kill_allocating_task 0 #进程由于OOM被kill掉后将生成core dump文件 dev@ubuntu:~$ cat /proc/sys/vm/oom_dump_tasks 1 #默认max core file size是0, 所以系统不会生成core文件 dev@ubuntu:~$ prlimit|grep CORE CORE max core file size 0 unlimited blocks #core dump文件的生成交给了apport,相关的设置可以参考apport的资料 dev@ubuntu:~$ cat /proc/sys/kernel/core_pattern |/usr/share/apport/apport %p %s %c %P
参考:apport
正如上面所介绍的那样,该文件的值可以取0/1/2,0是不触发panlic,2是一定触发panlic,如果为1的话就要看mempolicy和cpusets,这篇不介绍这方面的内容。
panic后内核的默认行
为是死在那里,目的是给开发人员一个连上去debug的机会。但对于大多数应用层开发人员来说没啥用,倒是希望它赶紧重启。为了让内核panic后重启,可以修改文件/proc/sys/kernel/panic,里面表示的是panic多少秒后系统将重启,这个文件的默认值是0,表示永远不重启。
#设置panic后3秒重启系统 dev@ubuntu:~$ sudo sh -c "echo 3 > /proc/sys/kernel/panic"
当oom_kill_allocating_task的值为0时(系统默认配置),系统会kill掉系统中分数最高的那个进程,这里的分数是怎么来的呢?该值由内核维护,并存储在每个进程的/proc/
每个进程的分数受多方面的影响,比如进程运行的时间,时间越长表明这个程序越重要,所以分数越低;进程从启动后分配的内存越多,表示越占内存,分数会越高;这里只是列举了一两个影响分数的因素,实际情况要复杂的多,需要看内核代码,这里有篇文章可以参考:Taming the OOM killer
由于分数计算复杂,比较难控制,于是内核提供了另一个文件用来调控分数,那就是文件/proc/
如果/proc/
如果/proc/
由于进程的分数在内核中是一个16位的整数,所以-17就意味着最终进程的分数永远是0,也即永远不会被kill掉。
当然这种控制方式也不是非常精确,但至少比没有强多了。
上面的这些文件都可以通过下面三种方式来修改,这里以panic_on_oom为例做个示范:
直接写文件(重启后失效)
dev@ubuntu:~$ sudo sh -c "echo 2> /proc/sys/vm/panic_on_oom"
通过控制命令(重启后失效)
dev@dev:~$ sudo sysctl vm.panic_on_oom=2
修改配置文件(重启后继续生效)
#通过编辑器将vm.panic_on_oom=2添加到文件sysctl.conf中(如果已经存在,修改该配置项即可) dev@dev:~$ sudo vim /etc/sysctl.conf #重新加载sysctl.conf,使修改立即生效 dev@dev:~$ sudo sysctl -p
一旦OOM killer被触发,内核将会生成相应的日志,一般可以在/var/log/messages里面看到,如果配置了syslog,日志可能在/var/log/syslog里面,这里是ubuntu里的日志样例
dev@dev:~$ grep oom /var/log/syslog Jan 23 21:30:29 dev kernel: [ 490.006836] eat_memory invoked oom-killer: gfp_mask=0x24280ca, order=0, oom_score_adj=0 Jan 23 21:30:29 dev kernel: [ 490.006871] [] oom_kill_process+0x202/0x3c0
除了系统的OOM killer之外,如果配置了memory cgroup,那么进程还将受到自己所属memory cgroup的限制,如果超过了cgroup的限制,将会触发cgroup的OOM killer,cgroup的OOM killer和系统的OOM killer行为略有不同,详情请参考Linux Cgroup系列(04):限制cgroup的内存使用。
malloc是libc的函数,C/C++程序员对这个函数应该都很熟悉,它里面实际上调用的是内核的sbrk和mmap,为了避免频繁的调用内核函数和优化性能,它里面在内核函数的基础上实现了一套自己的内存管理功能。
既然内存不够时有OOM killer帮我们kill进程,那么这时调用的malloc还会返回NULL给应用进程吗?答案是不会,因为这时只有两种情况:
当前申请内存的进程被kill掉:都被kill掉了,返回什么都没有意义了
其它进程被kill掉:释放出了空闲的内存,于是内核就能给当前进程分配内存了
那什么时候我们调用malloc的时候会返回NULL呢,从malloc函数的帮助文件可以看出,下面两种情况会返回NULL:
使用的虚拟地址空间超过了RLIMIT_AS的限制
使用的数据空间超过了RLIMIT_DATA的限制,这里的数据空间包括程序的数据段,BSS段以及heap
关于虚拟地址空间和heap之类的介绍请参考Linux进程的内存使用情况,这两个参数的默认值为unlimited,所以只要不修改它们的默认配置,限制就不会被触发。有一种极端情况需要注意,那就是代码写的有问题,超过了系统的虚拟地址空间范围,比如32位系统的虚拟地址空间范围只有4G,这种情况下不确定系统会以一种什么样的方式返回错误。
上面提到的RLIMIT_AS和RLIMIT_DATA都可以通过函数getrlimit和setrlimit来设置和读取,同时linux还提供了一个prlimit程序来设置和读取rlimit的配置。
prlimit是用来替代
ulimit的一个程序,除了能设置上面的那两个参数之外,还有其它的一些参数,比如core文件的大小。关于prlimit的用法请参考它的帮助文件。
#默认情况下,RLIMIT_AS和RLIMIT_DATA的值都是unlimited dev@dev:~$ prlimit |egrep "DATA|AS" AS address space limit unlimited unlimited bytes DATA max data size unlimited unlimited bytes
C语言的程序会受到libc的影响,可能在触发OOM killer之前就触发了segmentfault错误,如果要用C语言程序来测试触发OOM killer,一定要注意malloc的行为受MMAP_THRESHOLD影响,一次申请分配太多内存的话,malloc会调用mmap映射内存,从而不一定触发OOM killer,具体细节目前还不太清楚。这里是一个触发oom killer的例子,供参考:
#include#include #include #include #define M (1024 * 1024) #define K 1024 int main(int argc, char *argv[]) { char *p; int size =0; while(1) { p = (char *)malloc(K); if (p == NULL){ printf("memory allocate failed!\n"); return -1; } memset(p, 0, K); size += K; if (size%(100*M) == 0){ printf("%d00M memory allocated\n", size/(100*M)); sleep(1); } } return 0; }
对一个进程来说,内存的使用受多种因素的限制,可能在系统内存不足之前就达到了rlimit和memory cgroup的限制,同时它还可能受不同编程语言所使用的相关内存管理库的影响,就算系统处于内存不足状态,申请新内存也不一定会触发OOM killer,需要具体问题具体分析。
本文转之:https://segmentfault.com 中的Linux OOM killer,作者:public0821,表感谢!
参考:
理解和配置 Linux 下的 OOM Killer | vpsee.com
Linux OOM killer