改进YOLOv7系列:22.最新HorNet结合YOLOv7应用! | 多种搭配,即插即用 | Backbone主干、递归门控卷积的高效高阶空间交互

YOLO Air:面向小白科研的YOLO检测项目-GitHub

  • 统一使用 YOLOv5 代码框架,结合不同模块来构建不同的YOLO目标检测模型。

  • 本项目包含大量的改进方式,降低改进难度,改进点包含【Backbone特征主干】【Neck特征融合】【Head检测头】【注意力机制】【IoU损失函数】【NMS】【Loss计算方式】【自注意力机制】、【数据增强部分】【标签分配策略】、【激活函数】等各个部分,详情可以关注 YOLOAir 的说明文档。

    改进YOLOv7系列:22.最新HorNet结合YOLOv7应用! | 多种搭配,即插即用 | Backbone主干、递归门控卷积的高效高阶空间交互_第1张图片

  • 可以排列组合上千种模块 不同的搭配 (推荐)

  • 同时附带各种改进点原理及对应的代码改进方式教程,用户可根据自身情况快速排列组合,在不同的数据集上实验, 应用组合写论文!

YOLO Air算法库汇总了多种主流YOLO系列检测模型,一套代码集成多种模型:

YOLOv5 模型网络结构
YOLOv7 模型网络结构
YOLOX 模型网络结构
YOLOR 模型网络结构
YOLO3 模型网络结构
YOLO4 模型网络结构
等…

本篇是《HorNet 递归门控卷积结构》的修改 演示

使用YOLOv7网络作为示范

对于这块有疑问的,可以在评论区提出,或者私信CSDN。

  • 所有的改进代码的项目都在这个地址,点star!!
  • YOLOAir仓库:https://github.com/iscyy/yoloair
    forkstar,持续同步更新完善

文章目录

    • YOLO Air:面向小白科研的YOLO检测项目-GitHub
      • 更新
    • 1、HorNet理论部分
    • 1、在YOLOv7中 使用 新增C3HB结构 示例
    • 往期YOLO改进教程导航

更新

更新:新增YOLO中加入 C3HB 结构,参数量和计算量微涨

改进YOLOv7系列:22.最新HorNet结合YOLOv7应用! | 多种搭配,即插即用 | Backbone主干、递归门控卷积的高效高阶空间交互_第2张图片

论文地址:https://arxiv.org/abs/2207.14284

文章目录

    • YOLO Air:面向小白科研的YOLO检测项目-GitHub
      • 更新
    • 1、HorNet理论部分
    • 1、在YOLOv7中 使用 新增C3HB结构 示例
    • 往期YOLO改进教程导航

1、HorNet理论部分

视觉Transformer的最新进展表明,在基于点积自注意力的新空间建模机制驱动的各种任务中取得了巨大成功。在本文中,作者证明了视觉Transformer背后的关键成分,即输入自适应、长程和高阶空间交互,也可以通过基于卷积的框架有效实现。作者提出了递归门卷积(g n Conv),它用门卷积和递归设计进行高阶空间交互。新操作具有高度灵活性和可定制性,与卷积的各种变体兼容,并将自注意力中的二阶交互扩展到任意阶,而不引入显著的额外计算。g nConv可以作为一个即插即用模块来改进各种视觉Transformer和基于卷积的模型。基于该操作,作者构建了一个新的通用视觉主干族,名为HorNet。在ImageNet分类、COCO对象检测和ADE20K语义分割方面的大量实验表明,HorNet在总体架构和训练配置相似的情况下,优于Swin Transformers和ConvNeXt。HorNet还显示出良好的可扩展性,以获得更多的训练数据和更大的模型尺寸。除了在视觉编码器中的有效性外,作者还表明g n Conv可以应用于任务特定的解码器,并以较少的计算量持续提高密集预测性能。本文的结果表明,g n Conv可以作为一个新的视觉建模基本模块,有效地结合了视觉Transformer和CNN的优点。
改进YOLOv7系列:22.最新HorNet结合YOLOv7应用! | 多种搭配,即插即用 | Backbone主干、递归门控卷积的高效高阶空间交互_第3张图片
下图总结了g n Conv的细节实现:
改进YOLOv7系列:22.最新HorNet结合YOLOv7应用! | 多种搭配,即插即用 | Backbone主干、递归门控卷积的高效高阶空间交互_第4张图片

1、在YOLOv7中 使用 新增C3HB结构 示例

第一步: 在 common.py 文件中添加如下代码

yolov5/models/common.py文件 新增代码

class gnconv(nn.Module): # gnconv模块
    def __init__(self, dim, order=5, gflayer=None, h=14, w=8, s=1.0):
        super().__init__()
        self.order = order
        self.dims = [dim // 2 ** i for i in range(order)]
        self.dims.reverse()
        self.proj_in = nn.Conv2d(dim, 2*dim, 1)

        if gflayer is None:
            self.dwconv = get_dwconv(sum(self.dims), 7, True)
        else:
            self.dwconv = gflayer(sum(self.dims), h=h, w=w)
        
        self.proj_out = nn.Conv2d(dim, dim, 1)

        self.pws = nn.ModuleList(
            [nn.Conv2d(self.dims[i], self.dims[i+1], 1) for i in range(order-1)]
        )
        self.scale = s

    def forward(self, x, mask=None, dummy=False):
        fused_x = self.proj_in(x)
        pwa, abc = torch.split(fused_x, (self.dims[0], sum(self.dims)), dim=1)
        dw_abc = self.dwconv(abc) * self.scale
        dw_list = torch.split(dw_abc, self.dims, dim=1)
        x = pwa * dw_list[0]
        for i in range(self.order -1):
            x = self.pws[i](x) * dw_list[i+1]
        x = self.proj_out(x)

        return x

def get_dwconv(dim, kernel, bias):
    return nn.Conv2d(dim, dim, kernel_size=kernel, padding=(kernel-1)//2 ,bias=bias, groups=dim)

第二步: 在 common.py 文件中添加如下代码

class HorBlock(nn.Module):# HorBlock模块
    r""" HorNet block yoloair
    """
    def __init__(self, dim, drop_path=0., layer_scale_init_value=1e-6, gnconv=gnconv):
        super().__init__()

        self.norm1 = HorLayerNorm(dim, eps=1e-6, data_format='channels_first')
        self.gnconv = gnconv(dim)
        self.norm2 = HorLayerNorm(dim, eps=1e-6)
        self.pwconv1 = nn.Linear(dim, 4 * dim)
        self.act = nn.GELU()
        self.pwconv2 = nn.Linear(4 * dim, dim)
        self.gamma1 = nn.Parameter(layer_scale_init_value * torch.ones(dim), 
                                    requires_grad=True) if layer_scale_init_value > 0 else None
        self.gamma2 = nn.Parameter(layer_scale_init_value * torch.ones((dim)), 
                                    requires_grad=True) if layer_scale_init_value > 0 else None
        self.drop_path = DropPath(drop_path) if drop_path > 0. else nn.Identity()

    def forward(self, x):
        B, C, H, W  = x.shape # [512]
        if self.gamma1 is not None:
            gamma1 = self.gamma1.view(C, 1, 1)
        else:
            gamma1 = 1
        x = x + self.drop_path(gamma1 * self.gnconv(self.norm1(x)))
        input = x
        x = x.permute(0, 2, 3, 1) # (N, C, H, W) -> (N, H, W, C)
        x = self.norm2(x)
        x = self.pwconv1(x)
        x = self.act(x)
        x = self.pwconv2(x)
        if self.gamma2 is not None:
            x = self.gamma2 * x
        x = x.permute(0, 3, 1, 2) # (N, H, W, C) -> (N, C, H, W)
        x = input + self.drop_path(x)
        return x

第三步: 在 common.py 文件中添加如下代码

class C3HB(nn.Module):
    # CSP HorBlock with 3 convolutions by iscyy/yoloair
    def __init__(self, c1, c2, n=1, shortcut=True, g=1, e=0.5):  # ch_in, ch_out, number, shortcut, groups, expansion
        super().__init__()
        c_ = int(c2 * e)  # hidden channels
        self.cv1 = Conv(c1, c_, 1, 1)
        self.cv2 = Conv(c1, c_, 1, 1)
        self.cv3 = Conv(2 * c_, c2, 1)
        self.m = nn.Sequential(*(HorBlock(c_) for _ in range(n)))
    def forward(self, x):
        return self.cv3(torch.cat((self.m(self.cv1(x)), self.cv2(x)), dim=1))

第二步: 增加yolov5_C3HB.yaml配置文件(演示,可自行调整网络搭配)

# YOLOv7 , GPL-3.0 license
# parameters
nc: 80  # number of classes
depth_multiple: 0.33  # model depth multiple
width_multiple: 1.0  # layer channel multiple

# anchors
anchors:
  - [12,16, 19,36, 40,28]  # P3/8
  - [36,75, 76,55, 72,146]  # P4/16
  - [142,110, 192,243, 459,401]  # P5/32

# yolov7 backbone by yoloair
backbone:
  # [from, number, module, args]
  [[-1, 1, Conv, [32, 3, 1]],  # 0
   [-1, 1, Conv, [64, 3, 2]],  # 1-P1/2
   [-1, 1, Conv, [64, 3, 1]],
   [-1, 1, Conv, [128, 3, 2]],  # 3-P2/4 
   [-1, 1, C3HB, [128]], 
   [-1, 1, Conv, [256, 3, 2]], 
   [-1, 1, MP, []],
   [-1, 1, Conv, [128, 1, 1]],
   [-3, 1, Conv, [128, 1, 1]],
   [-1, 1, Conv, [128, 3, 2]],
   [[-1, -3], 1, Concat, [1]],  # 16-P3/8
   [-1, 1, Conv, [128, 1, 1]],
   [-2, 1, Conv, [128, 1, 1]],
   [-1, 1, Conv, [128, 3, 1]],
   [-1, 1, Conv, [128, 3, 1]],
   [-1, 1, Conv, [128, 3, 1]],
   [-1, 1, Conv, [128, 3, 1]],
   [[-1, -3, -5, -6], 1, Concat, [1]],
   [-1, 1, Conv, [512, 1, 1]],
   [-1, 1, MP, []],
   [-1, 1, Conv, [256, 1, 1]],
   [-3, 1, Conv, [256, 1, 1]],
   [-1, 1, Conv, [256, 3, 2]],
   [[-1, -3], 1, Concat, [1]],
   [-1, 1, Conv, [256, 1, 1]],
   [-2, 1, Conv, [256, 1, 1]],
   [-1, 1, Conv, [256, 3, 1]],
   [-1, 1, Conv, [256, 3, 1]],
   [-1, 1, Conv, [256, 3, 1]],
   [-1, 1, Conv, [256, 3, 1]],
   [[-1, -3, -5, -6], 1, Concat, [1]],
   [-1, 1, Conv, [1024, 1, 1]],          
   [-1, 1, MP, []],
   [-1, 1, Conv, [512, 1, 1]],
   [-3, 1, Conv, [512, 1, 1]],
   [-1, 1, Conv, [512, 3, 2]],
   [[-1, -3], 1, Concat, [1]],
   [-1, 1, C3HB, [1024]],
   [-1, 1, Conv, [256, 3, 1]],
  ]

# yolov7 head by yoloair
head:
  [[-1, 1, SPPCSPC, [512]],
   [-1, 1, Conv, [256, 1, 1]],
   [-1, 1, nn.Upsample, [None, 2, 'nearest']],
   [31, 1, Conv, [256, 1, 1]],
   [[-1, -2], 1, Concat, [1]],
   [-1, 1, C3HB, [128]],
   [-1, 1, Conv, [128, 1, 1]],
   [-1, 1, nn.Upsample, [None, 2, 'nearest']],
   [18, 1, Conv, [128, 1, 1]],
   [[-1, -2], 1, Concat, [1]],
   [-1, 1, C3HB, [128]],
   [-1, 1, MP, []],
   [-1, 1, Conv, [128, 1, 1]],
   [-3, 1, Conv, [128, 1, 1]],
   [-1, 1, Conv, [128, 3, 2]],
   [[-1, -3, 44], 1, Concat, [1]],
   [-1, 1, C3HB, [256]], 
   [-1, 1, MP, []],
   [-1, 1, Conv, [256, 1, 1]],
   [-3, 1, Conv, [256, 1, 1]],
   [-1, 1, Conv, [256, 3, 2]], 
   [[-1, -3, 39], 1, Concat, [1]],
   [-1, 3, C3HB, [512]],

# 检测头 -----------------------------
   [49, 1, RepConv, [256, 3, 1]],
   [55, 1, RepConv, [512, 3, 1]],
   [61, 1, RepConv, [1024, 3, 1]],

   [[62,63,64], 1, IDetect, [nc, anchors]],   # Detect(P3, P4, P5)
  ]

第三步:在 models/yolo.py文件夹下

  • 定位到parse_model函数中
  • for i, (f, n, m, args) in enumerate(d['backbone'] + d['head']):内部
  • 对应位置 下方只需要新增以下代码
elif m is C3HB:
    c1, c2 = ch[f], args[0]
    if c2 != no:
        c2 = make_divisible(c2 * gw, 8)

    args = [c1, c2, *args[1:]]
    if m is C3HB:
        args.insert(2, n)
        n = 1

第四步: 运行python train.py --cfg yolov7_C3HB.yaml

往期YOLO改进教程导航

  • 9.改进YOLOv5系列:9.BoTNet Transformer结构的修改

  • 8.改进YOLOv5系列:8.增加ACmix结构的修改,自注意力和卷积集成

  • 7.改进YOLOv5系列:7.修改DIoU-NMS,SIoU-NMS,EIoU-NMS,CIoU-NMS,GIoU-NMS

  • 6.改进YOLOv5系列:6.修改Soft-NMS,Soft-CIoUNMS,Soft-SIoUNMS

  • 5.改进YOLOv5系列:5.CotNet Transformer结构的修改

  • 4.改进YOLOv5系列:4.YOLOv5_最新MobileOne结构换Backbone修改

  • 3.改进YOLOv5系列:3.Swin Transformer结构的修改

  • 2.改进YOLOv5系列:2.PicoDet结构的修改

  • 1.改进YOLOv5系列:1.多种注意力机制修改

你可能感兴趣的:(目标检测-YOLOv7,深度学习,计算机视觉,人工智能)