我们之前学过BP神经网络,今天我们学习一下小波神经网络,和BP神经网络相比,小波神经网络拥有小波变换的优点,避免了 BP 网络设计结构上的盲目性,但是隐含层的节点数以及各层之间的权值、尺度因子的初始化参数难以确定,会影响网络的收敛速度。在后续的学习中,可以尝试其他小波函数的神经网络,通过比较其最优结果构造小波神经网络。
目录
一、小波神经网络案例
1.1、比较BP神经网络和小波神经网络
1.2、小波神经网络建立
1.3、小波神经网络的预测流程图
1.4、数据集准备
1.5、小波神经网络预测短时交通流MATLAB代码及结果分析
1.6、小结
我们首先看一下BP神经网络,BP 网络的实现过程主要分成两个阶段,第一阶段是信号的前向传播,从输入层经过隐含层到达输出层,第二阶段是误差的反向传播,从输出层经过隐含层到达输入层。误差传递完后,依次调节输入层和隐含层之间的权值和偏置,以及隐含层和输出层之间的权值和偏置。如图所示:
BP神经网络的神经元如下所示,一般使用的激活函数是sigmoid函数,如下:
小波变换是以 Fourier 分析为基础的一种新的数学变换手段,它克服了 Fourier变换的局限性以及加窗 Fourier 变换的窗口不变的缺点。小波变换主要通过伸缩和平移实现多尺度细化,突出所要处理的问题细节,有效提取局部信息。小波神经网络是改进的BP网络,将原先的隐含层的Sigmiod激活函数替换为小波函数——Morlet小波,其表达式为:
我们看一下这个小波神经网络,相比BP神经网络,将原先的隐含层的Sigmiod激活函数替换为小波函数。
小波神经网络的预测过程如下,初始化网络权值和伸缩平移尺度等参数,计算误差,根据误差调整参数,根据训练集训练出较好的网络,然后根据网络进行预测。
数据划分为训练集数据和测试集数据,训练276组,测试集92组,输入为交通相关的四个参数,输出是交通流量。
下面看一下小波神经网络的matlab代码:
%% 清空环境变量
clc
clear
%% 网络参数配置
load traffic_flux input output input_test output_test
M=size(input,2); %输入节点个数
N=size(output,2); %输出节点个数
n=6; %隐藏层节点个数
lr1=0.01; %学习速率
lr2=0.001; %学速率速率
maxgen=100; %迭代次数
%初始化输入层到隐含层,隐含层到输出层的权值
Wjk=randn(n,M);Wjk_1=Wjk;Wjk_2=Wjk_1;
Wij=randn(N,n);Wij_1=Wij;Wij_2=Wij_1;
%初始化伸缩因子
a=randn(1,n);a_1=a;a_2=a_1;
b=randn(1,n);b_1=b;b_2=b_1;
%节点初始化
y=zeros(1,N);
net=zeros(1,n);
net_ab=zeros(1,n);
%权值学习增量初始化
d_Wjk=zeros(n,M);
d_Wij=zeros(N,n);
d_a=zeros(1,n);
d_b=zeros(1,n);
%% 输入输出数据归一化
[inputn,inputps]=mapminmax(input');
[outputn,outputps]=mapminmax(output');
inputn=inputn';
outputn=outputn';
%% 网络训练
for i=1:maxgen
%误差累计
error(i)=0;
% 循环训练
for kk=1:size(input,1)
x=inputn(kk,:);
yqw=outputn(kk,:);
for j=1:n
for k=1:M
net(j)=net(j)+Wjk(j,k)*x(k);
net_ab(j)=(net(j)-b(j))/a(j);
end
temp = exp(-(net_ab(j).^2)/2) * cos(1.75*net_ab(j));
%temp=mymorlet(net_ab(j)); %小波函数
for k=1:N
y=y+Wij(k,j)*temp; %计算输出
end
end
%计算误差和
error(i)=error(i)+sum(abs(yqw-y));
%权值调整
for j=1:n
%计算d_Wij,隐藏层和输出层权值调整
temp=exp(-(net_ab(j).^2)/2) * cos(1.75*net_ab(j));
for k=1:N
d_Wij(k,j)=d_Wij(k,j)-(yqw(k)-y(k))*temp;
end
%计算d_Wjk,输入层到隐藏层权值调整
temp = -1.75*sin(1.75*net_ab(j)).*exp(-(net_ab(j).^2)/2)-net_ab(j)* cos(1.75*net_ab(j)).*exp(-(net_ab(j).^2)/2) ;
for k=1:M
for l=1:N
d_Wjk(j,k)=d_Wjk(j,k)+(yqw(l)-y(l))*Wij(l,j) ;
end
d_Wjk(j,k)=-d_Wjk(j,k)*temp*x(k)/a(j);
end
%计算d_b,伸缩因子
for k=1:N
d_b(j)=d_b(j)+(yqw(k)-y(k))*Wij(k,j);
end
d_b(j)=d_b(j)*temp/a(j);
%计算d_a,伸缩因子
for k=1:N
d_a(j)=d_a(j)+(yqw(k)-y(k))*Wij(k,j);
end
d_a(j)=d_a(j)*temp*((net(j)-b(j))/b(j))/a(j);
end
%权值参数更新
Wij=Wij-lr1*d_Wij;
Wjk=Wjk-lr1*d_Wjk;
b=b-lr2*d_b;
a=a-lr2*d_a;
d_Wjk=zeros(n,M);
d_Wij=zeros(N,n);
d_a=zeros(1,n);
d_b=zeros(1,n);
y=zeros(1,N);
net=zeros(1,n);
net_ab=zeros(1,n);
Wjk_1=Wjk;Wjk_2=Wjk_1;
Wij_1=Wij;Wij_2=Wij_1;
a_1=a;a_2=a_1;
b_1=b;b_2=b_1;
end
end
%% 网络预测
%预测输入归一化
x=mapminmax('apply',input_test',inputps);
x=x';
%网络预测
for i=1:92
x_test=x(i,:);
for j=1:1:n
for k=1:1:M
net(j)=net(j)+Wjk(j,k)*x_test(k);
net_ab(j)=(net(j)-b(j))/a(j);
end
temp=exp(-(net_ab(j).^2)/2) * cos(1.75*net_ab(j));
for k=1:N
y(k)=y(k)+Wij(k,j)*temp ;
end
end
yuce(i)=y(k);
y=zeros(1,N);
net=zeros(1,n);
net_ab=zeros(1,n);
end
%预测输出反归一化
ynn=mapminmax('reverse',yuce,outputps);
%% 结果分析
figure(1)
plot(ynn,'r*:')
hold on
plot(output_test,'bo--')
title('预测交通流量','fontsize',12)
legend('预测交通流量','实际交通流量')
xlabel('时间点')
ylabel('交通流量')
这次使用了两个Morlet小波函数:用来更新各层之间的权重和伸缩因子。
y = exp(-(t.^2)/2) * cos(1.75*t);
y = -1.75*sin(1.75*t).*exp(-(t.^2)/2)-t* cos(1.75*t).*exp(-(t.^2)/2) ;
预测的效果如下所示,可以发现使用测试集进行预测,预测的交通流量和实际的交通流量较为接近,网络模型的泛化能力较好。
小波神经网络(Wavelet Neural Network, WNN)是在小波分析研究获得突破的基础上提出的一种人工神经网络。它是基于小波分析理论以及小波变换所构造的一种分层的、多分辨率的新型人工神经网络模型。即用非线性小波基取代了通常的非线性Sigmoid 函数,其信号表述是通过将所选取的小波基进行线性叠加来表现的。它避免了BP 神经网络结构设计的盲目性和局部最优等非线性优化问题,大大简化了训练,具有较强的函数学习能力和推广能力及广阔的应用前景。