LaTex学习——Texlive及texstudio的下载与安装

Texlive及texstudio的安装

雨中漫步

首先我们介绍为什么需要Latex,虽然word使用起来比较简单便捷,但是它在处理数学物理公式上比较繁琐,而LaTex是排版很好看,尤其对数学物理公式处理较为方便,因此我们要是想要写一些科技论文,学习LaTex是一个不错的选择。下面我来介绍一下如何进行安装。

Texlive的下载

为了快速下载这里提供清华大学开源镜像上下载Texlive的下载
下载比较简单,这里就不介绍了。

texstudio的下载:

其实Texlive自带编译器texworks,但是不太好用,我们一般使用texstudio作为编译器,其下载路径为texstudio的下载LaTex学习——Texlive及texstudio的下载与安装_第1张图片下载结束后我们为了方便设置中文环境:
LaTex学习——Texlive及texstudio的下载与安装_第2张图片zh_cn即为汉化
接着我们考虑设置默认编译器XeLatex这样方便识别中文:
LaTex学习——Texlive及texstudio的下载与安装_第3张图片其中默认查看器是PDF查看器,可以直接转化为PDF查看,这样子我们就下好了,之后的学习是个渐进的过程,多问多实践就会慢慢掌握。下面查看LaTex代码在此编译器下的效果:
( 1 ) ∫ x ( x + 1 ) ( e x + x + 1 ) 2 d x = ∫ ( e x + x + 1 ) 2 − ( e x + x + 1 ) ( e x + 1 ) − x e x ( e x + x + 1 ) 2 d x                          = x − ln ⁡ ( e x + x + 1 ) − ∫ x ( e x + 1 ) ( e x + x + 1 ) 2 − x ( e x + x + 1 ) 2 d x                          = x − ln ⁡ ( e x + x + 1 ) + x e x + x + 1 − ∫ ( e x + 1 ) d x ( e x + x + 1 ) 2 = x − ln ⁡ ∣ e x + x + 1 ∣ + x + 1 e x + x + 1 + C ( 2 ) ∫ 0 π 2 sin ⁡ 2 x 1 + sin ⁡ 4 x d x = − ∫ 0 π 2 1 1 + csc ⁡ 4 x d cot ⁡ x = − ∫ 0 π 2 1 1 + ( cot ⁡ 2 x + 1 ) 2 d cot ⁡ x = ∫ 0 + ∞ d x 1 + ( x 2 + 1 ) 2                            = π i ( Re s [ 1 1 + ( x 2 + 1 ) 2 , 2 1 4 e 3 π i 8 ] + Re s [ 1 1 + ( x 2 + 1 ) 2 , 2 1 4 e − 3 π i 8 ] ) = 1 4 2 − 1 π ( 3 ) ∫ d x 1 + sin ⁡ 4 x = ∫ sin ⁡ 2 x + cos ⁡ 2 x ( sin ⁡ 2 x + cos ⁡ 2 x ) 2 + sin ⁡ 4 x d x = − ∫ cot ⁡ 2 x + 1 ( cot ⁡ 2 x + 1 ) 2 + 1 d cot ⁡ x 考虑到 : ∫ t 2 + 1 ( t 2 + 1 ) 2 + 1 d t = 1 2 ∫ d ( t − 2 t ) + d ( t + 2 t ) t 2 + 2 + 2 t 2 + 1 2 2 ∫ d ( t − 2 t ) − d ( t + 2 t ) t 2 + 2 + 2 t 2                              = ( 1 2 + 1 2 2 ) ( arctan ⁡ ( t − 2 t ) 2 2 + 2 2 2 + 2 ) + ( 1 2 − 1 2 2 ) ln ⁡ ∣ t + 2 t − 2 2 − 2 t + 2 t + 2 2 − 2 ∣ 2 2 2 − 2 ∴ ∫ d x 1 + sin ⁡ 4 x = − [ ( 1 2 + 1 2 2 ) ( arctan ⁡ ( cot ⁡ x − 2 cot ⁡ x ) 2 2 + 2 2 2 + 2 ) + ( 1 2 − 1 2 2 ) ln ⁡ ∣ cot ⁡ x + 2 cot ⁡ x − 2 2 − 2 cot ⁡ x + 2 cot ⁡ x + 2 2 − 2 ∣ 2 2 2 − 2 ] \left( 1 \right) \int{\frac{x\left( x+1 \right)}{\left( e^x+x+1 \right) ^2}dx}=\int{\frac{\left( e^x+x+1 \right) ^2-\left( e^x+x+1 \right) \left( e^x+1 \right) -xe^x}{\left( e^x+x+1 \right) ^2}dx}\\ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~~~~~~~~~~~~=x-\ln \left( e^x+x+1 \right) -\int{\frac{x\left( e^x+1 \right)}{\left( e^x+x+1 \right) ^2}-}\frac{x}{\left( e^x+x+1 \right) ^2}dx\\ ~~ ~~ ~~ ~~ ~~~~~~~~~~~~~~~~=x-\ln \left( e^x+x+1 \right) +\frac{x}{e^x+x+1}-\int{\frac{\left( e^x+1 \right) dx}{\left( e^x+x+1 \right) ^2}}\\ =x-\ln |e^x+x+1|+\frac{x+1}{e^x+x+1}+C \\ \left( 2 \right) \int_0^{\frac{\pi}{2}}{\frac{\sin ^2x}{1+\sin ^4x}}dx=-\int_0^{\frac{\pi}{2}}{\frac{1}{1+\csc ^4x}}d\cot x=-\int_0^{\frac{\pi}{2}}{\frac{1}{1+\left( \cot ^2x+1 \right) ^2}}d\cot x=\int_0^{+\infty}{\frac{dx}{1+\left( x^2+1 \right) ^2}} \\ \,\, ~~~~~~~~~~~~~~~~~~~~~~~ =\pi i\left( \text{Re}s\left[ \frac{1}{1+\left( x^2+1 \right) ^2},2^{\frac{1}{4}}e^{\frac{3\pi i}{8}} \right] +\text{Re}s\left[ \frac{1}{1+\left( x^2+1 \right) ^2},2^{\frac{1}{4}}e^{\frac{-3\pi i}{8}} \right] \right) =\frac{1}{4}\sqrt{\sqrt{2}-1}\pi \\ \left( 3 \right) \int{\frac{dx}{1+\sin ^4x}}=\int{\frac{\sin ^2x+\cos ^2x}{\left( \sin ^2x+\cos ^2x \right) ^2+\sin ^4x}dx=-\int{\frac{\cot ^2x+1}{\left( \cot ^2x+1 \right) ^2+1}}}d\cot x \\ \text{考虑到}:\int{\frac{t^2+1}{\left( t^2+1 \right) ^2+1}}dt=\frac{1}{2}\int{\frac{d\left( t-\frac{\sqrt{2}}{t} \right) +d\left( t+\frac{\sqrt{2}}{t} \right)}{t^2+2+\frac{2}{t^2}}}+\frac{1}{2\sqrt{2}}\int{\frac{d\left( t-\frac{\sqrt{2}}{t} \right) -d\left( t+\frac{\sqrt{2}}{t} \right)}{t^2+2+\frac{2}{t^2}}} \\ \,\, ~~~~~~~~~~~~~~~~~~~~~~~~~ =\left( \frac{1}{2}+\frac{1}{2\sqrt{2}} \right) \left( \frac{\arctan \frac{\left( t-\frac{\sqrt{2}}{t} \right)}{\sqrt{2\sqrt{2}+2}}}{\sqrt{2\sqrt{2}+2}} \right) +\left( \frac{1}{2}-\frac{1}{2\sqrt{2}} \right) \frac{\ln |\frac{t+\frac{\sqrt{2}}{t}-\sqrt{2\sqrt{2}-2}}{t+\frac{\sqrt{2}}{t}+\sqrt{2\sqrt{2}-2}}|}{2\sqrt{2\sqrt{2}-2}} \\ \therefore \int{\frac{dx}{1+\sin ^4x}}=-\left[ \left( \frac{1}{2}+\frac{1}{2\sqrt{2}} \right) \left( \frac{\arctan \frac{\left( \cot x-\frac{\sqrt{2}}{\cot x} \right)}{\sqrt{2\sqrt{2}+2}}}{\sqrt{2\sqrt{2}+2}} \right) +\left( \frac{1}{2}-\frac{1}{2\sqrt{2}} \right) \frac{\ln |\frac{\cot x+\frac{\sqrt{2}}{\cot x}-\sqrt{2\sqrt{2}-2}}{\cot x+\frac{\sqrt{2}}{\cot x}+\sqrt{2\sqrt{2}-2}}|}{2\sqrt{2\sqrt{2}-2}} \right] \\ (1)(ex+x+1)2x(x+1)dx=(ex+x+1)2(ex+x+1)2(ex+x+1)(ex+1)xexdx                        =xln(ex+x+1)(ex+x+1)2x(ex+1)(ex+x+1)2xdx                        =xln(ex+x+1)+ex+x+1x(ex+x+1)2(ex+1)dx=xlnex+x+1+ex+x+1x+1+C(2)02π1+sin4xsin2xdx=02π1+csc4x1dcotx=02π1+(cot2x+1)21dcotx=0+1+(x2+1)2dx                       =πi(Res[1+(x2+1)21,241e83πi]+Res[1+(x2+1)21,241e83πi])=412 1 π(3)1+sin4xdx=(sin2x+cos2x)2+sin4xsin2x+cos2xdx=(cot2x+1)2+1cot2x+1dcotx考虑到:(t2+1)2+1t2+1dt=21t2+2+t22d(tt2 )+d(t+t2 )+22 1t2+2+t22d(tt2 )d(t+t2 )                         =(21+22 1)22 +2 arctan22 +2 (tt2 )+(2122 1)222 2 lnt+t2 +22 2 t+t2 22 2 1+sin4xdx=(21+22 1)22 +2 arctan22 +2 (cotxcotx2 )+(2122 1)222 2 lncotx+cotx2 +22 2 cotx+cotx2 22 2
在复杂的公式面前,LaTex实现更加容易,便捷。而word是很难实现的。这也是为什么LaTex正逐渐成为理科生必备论文利器。今天介绍到这里,希望大家多多关注和支持。

你可能感兴趣的:(texstudio,texlive,latex)