基本代码举例如下:
MAX= 2*X1+3*x2;
2*X1+2*X2<=12;
X1+2*X2<=8;
4*X1<=16;
4*X2<=12;
求解结果:
Global optimal solution found.
Objective value: 14.00000
Infeasibilities: 0.000000
Total solver iterations: 1
Variable Value Reduced Cost
X1 4.000000 0.000000
X2 2.000000 0.000000
Row Slack or Surplus Dual Price
1 14.00000 1.000000
2 0.000000 0.000000
3 0.000000 1.500000
4 0.000000 0.1250000
5 4.000000 0.000000
!COMMENTS;
MODEL:
SETS:
//集合段
ENDSETS
DATA:
//数据段
ENDDATA
//约束段
END
专业模型一般三部分组成
一般形式
向量形式
模型矩阵形式
简单模型只适合与很小的问题的建模和求解
专业模型适合于规模较大,比较复杂的问题建模和求解
在建模语言中引入集合,使得LINGO能够使用非常简洁的语句描述数学模型,及时变量和约束的数量增大,目标函数和约束条件的语句却无需改变,只需要改变集合和数据的定义。
集合的表示和运用是LINGO建模语言的重点和精华,需要重点掌握。
! Name : PLAN1.txt
! Date : 2022-03-14
! Desc :
;
MODEL:
SETS:
product/p,q/:price,x;
equipment/a,b,c,d/:capacity;
workhour(product,equipment):T;
ENDSETS
DATA:
price = 2 3;
capacity = 12 8 16 12;
t =
2 1 4 0
2 2 0 4;
ENDDATA
MAX= @sum(product: X*price);
@for(equipment(J):
@sum(product(I): X(I)*T(I,J))<=capacity(J)
);
END
求解结果:
Global optimal solution found.
Objective value: 14.00000
Infeasibilities: 0.000000
Total solver iterations: 1
Variable Value Reduced Cost
PRICE( P) 2.000000 0.000000
PRICE( Q) 3.000000 0.000000
X( P) 4.000000 0.000000
X( Q) 2.000000 0.000000
CAPACITY( A) 12.00000 0.000000
CAPACITY( B) 8.000000 0.000000
CAPACITY( C) 16.00000 0.000000
CAPACITY( D) 12.00000 0.000000
T( P, A) 2.000000 0.000000
T( P, B) 1.000000 0.000000
T( P, C) 4.000000 0.000000
T( P, D) 0.000000 0.000000
T( Q, A) 2.000000 0.000000
T( Q, B) 2.000000 0.000000
T( Q, C) 0.000000 0.000000
T( Q, D) 4.000000 0.000000
Row Slack or Surplus Dual Price
1 14.00000 1.000000
2 0.000000 0.000000
3 0.000000 1.500000
4 0.000000 0.1250000
5 4.000000 0.000000
Globa optimal solution:全局最优解
Objective value: 目标函数值
Infeasibilities: 不可行性,未满足的约束条件总数
Total solver iterations: 迭代次数
Variable :变量
Reduced Cost: 各个变量的检验数
Slack or Surplus:松弛或剩余
Dual Price: 对偶价格
约束如下:
MIN = -3*X1+X2+X3;
X1-2*X2+X3<=11;
-4*X1+X2+2*X3>=3;
-2*X1+X3=1;
运算结果:
Global optimal solution found.
Objective value: -2.000000
Infeasibilities: 0.000000
Total solver iterations: 0
Variable Value Reduced Cost
X1 4.000000 0.000000
X2 1.000000 0.000000
X3 9.000000 0.000000
Row Slack or Surplus Dual Price
1 -2.000000 -1.000000
2 0.000000 0.3333333
3 0.000000 -0.3333333
4 0.000000 -0.6666667
约束如下:
max = 3*x1+2*x2+5*x3;
x1+2*x2+x3+x4=430;
3*x1+2*x3+x5=460;
x1+4*x2+x6=420;
运算结果:
Global optimal solution found.
Objective value: 1350.000
Infeasibilities: 0.000000
Total solver iterations: 2
Variable Value Reduced Cost
X1 0.000000 4.000000
X2 100.0000 0.000000
X3 230.0000 0.000000
X4 0.000000 1.000000
X5 0.000000 2.000000
X6 20.00000 0.000000
Row Slack or Surplus Dual Price
1 1350.000 1.000000
2 0.000000 1.000000
3 0.000000 2.000000
4 0.000000 0.000000
对于多种最优解的线性规划模型,LINGO能找出其中的一个解,并且没有其他提示。
用单纯形表计算线性规划问题,判定多重最优解的方法是:如果在最优表中所有的基变量的取值都大于0,那么该线性规划模型具有多重最优解。
初始条件:
min = x1-x2;
-x1+x2<=2;
2*x1+x2<=2;
多重最优解:
Global optimal solution found.
Objective value: -2.000000
Infeasibilities: 0.000000
Total solver iterations: 1
Variable Value Reduced Cost
X1 0.000000 3.000000
X2 2.000000 0.000000
Row Slack or Surplus Dual Price
1 -2.000000 -1.000000
2 0.000000 0.000000
3 0.000000 1.000000
//x1>1
Global optimal solution found.
Objective value: 1.000000
Infeasibilities: 0.000000
Total solver iterations: 0
Variable Value Reduced Cost
X1 1.000000 0.000000
X2 0.000000 0.000000
Row Slack or Surplus Dual Price
1 1.000000 -1.000000
2 3.000000 0.000000
3 0.000000 1.000000
4 0.000000 -3.000000
如果在单纯形表中基变量的取值为0,则称该可行解是退化的。
举例条件:
min = -2*x1+x2-x3+2*x4-x5;
2*x1+x3+x5<=20;
x1+x2+2*x5=10;
x1+x4+3*x5=30;
求解
Global optimal solution found.
Objective value: 10.00000
Infeasibilities: 0.000000
Total solver iterations: 2
Variable Value Reduced Cost
X1 0.000000 1.000000
X2 0.000000 4.000000
X3 15.00000 0.000000
X4 15.00000 0.000000
X5 5.000000 0.000000
Row Slack or Surplus Dual Price
1 10.00000 -1.000000
2 0.000000 1.000000
3 0.000000 3.000000
4 0.000000 -2.000000
遇到线性规划问题是无界解的情况LINGO能欧自动发现并给出提示:
UNbound solution
举例:
max = x1+2*x2;
2*x1-x2<=4;
x1<=2;
结果:
Model is unbounded
Variable Value Reduced Cost
X1 2.000000 0.000000
X2 0.000000 -2.000000
Row Slack or Surplus Dual Price
1 -0.1000000E+31 1.000000
2 0.000000 0.000000
3 0.000000 1.000000
遇到线性规划问题是无可形解的情况,lingo也能发现并给出提示:
No feasible solution.
举例:
max = 2*x1+3*x2;
2*x1+2*x2<=12;
x1+2*x2>=14;
运行结果:
No feasible solution found.
Infeasibilities: 2.000000
Total solver iterations: 1
Variable Value Reduced Cost
X1 0.000000 1.000000
X2 6.000000 0.000000
Row Slack or Surplus Dual Price
1 2.000000 1.000000
2 0.000000 1.500000
3 -2.000000 0.000000
lingo是专门用于求解数学规划的专业软件
用LINGO可以建立两种数学模型
集合的表示和运用是LINGO建模语言的重点和精华,也是建立专业模型的基础,应该努力掌握并且灵活运用。
用lingo求解线性规划能发现无界解,无可行解的情况,但对于多重最优解只能求解出其中的一个解,而且不能给出此问题为多重最优解的提示。