1、首先打开微信,选择底部“发现”。如图所示。2、然后在点击进入“小程序”。如图所示。3、然后输入“腾讯AI体验中心”搜索,点击进入。4、选择“人脸对比”。如图所示。
5、上传两张图片上去,点击“人脸比对”。6、最后两个人的相似度就出来了。完成效果图。
谷歌人工智能写作项目:神经网络伪原创
AI发猫。
图像相似度计算之哈希值方法OpenCV实现分类:OpenCVImageProcessing2014-12-2521:27180人阅读评论(0)收藏举报感知哈希算法(perceptualhashalgorithm),它的作用是对每张图像生成一个“指纹”(fingerprint)字符串,然后比较不同图像的指纹。
结果越接近,就说明图像越相似。实现步骤:1.缩小尺寸:将图像缩小到8*8的尺寸,总共64个像素。
这一步的作用是去除图像的细节,只保留结构/明暗等基本信息,摒弃不同尺寸/比例带来的图像差异;2.简化色彩:将缩小后的图像,转为64级灰度,即所有像素点总共只有64种颜色;3.计算平均值:计算所有64个像素的灰度平均值;4.比较像素的灰度:将每个像素的灰度,与平均值进行比较,大于或等于平均值记为1,小于平均值记为0;5.计算哈希值:将上一步的比较结果,组合在一起,就构成了一个64位的整数,这就是这张图像的指纹。
组合的次序并不重要,只要保证所有图像都采用同样次序就行了;6.得到指纹以后,就可以对比不同的图像,看看64位中有多少位是不一样的。
在理论上,这等同于”汉明距离”(Hammingdistance,在信息论中,两个等长字符串之间的汉明距离是两个字符串对应位置的不同字符的个数)。
如果不相同的数据位数不超过5,就说明两张图像很相似;如果大于10,就说明这是两张不同的图像。
以上内容摘自:下面是用OpenCV实现的测试代码:[cpp]viewplaincopyprint?stringstrSrcImageName="";cv::MatmatSrc,matSrc1,matSrc2;matSrc=cv::imread(strSrcImageName,CV_LOAD_IMAGE_COLOR);CV_Assert(matSrc.channels()==3);cv::resize(matSrc,matSrc1,cv::Size(357,419),0,0,cv::INTER_NEAREST);//cv::flip(matSrc1,matSrc1,1);cv::resize(matSrc,matSrc2,cv::Size(2177,3233),0,0,cv::INTER_LANCZOS4);cv::MatmatDst1,matDst2;cv::resize(matSrc1,matDst1,cv::Size(8,8),0,0,cv::INTER_CUBIC);cv::resize(matSrc2,matDst2,cv::Size(8,8),0,0,cv::INTER_CUBIC);cv::cvtColor(matDst1,matDst1,CV_BGR2GRAY);cv::cvtColor(matDst2,matDst2,CV_BGR2GRAY);intiAvg1=0,iAvg2=0;intarr1[64],arr2[64];for(inti=0;i<8;i++){uchar*data1=(i);uchar*data2=(i);inttmp=i*8;for(intj=0;j<8;j++){inttmp1=tmp+j;arr1[tmp1]=data1[j]/4*4;arr2[tmp1]=data2[j]/4*4;iAvg1+=arr1[tmp1];iAvg2+=arr2[tmp1];}}iAvg1/=64;iAvg2/=64;for(inti=0;i<64;i++){arr1[i]=(arr1[i]>=iAvg1)?1:0;arr2[i]=(arr2[i]>=iAvg2)?1:0;}intiDiffNum=0;for(inti=0;i<64;i++)if(arr1[i]!=arr2[i])++iDiffNum;cout。
很麻烦,而且计算量很大,这个属于人工智能的范畴。如果这“两张相似图片”可以规定很多前提,比如相同分辨率,黑白,简单几何图形。。。
那么可以用基本的算法去算一下“相似度”,也就是楼上说的,读取两张照片的像素点,然后遍历去对比灰度差值。
这些有很多现成的算法,也有很多网站提供这方面的计算(直接调用API即可),但是只能得出数字化的“相似度”。如果你要的就是两张图片像素点之间的差异,那么就去找算法即可实现。
看一参考这个网站:这个是国外比较知名的图像处理的网站。但是,两张图片如果尺寸不一呢?如果比例不一样呢?如果有留白呢?彩色的呢?
所以目前最成熟的编程算法也就是识别一下字母和数字(比如谷歌可以识别照片上的门牌号和街道号),人脸识别也只是拿几个标本部位来大致判断相似度(眼睛的大小,鼻梁的高度,脸颊的宽瘦和比例),以人眼的标准完整的去比较两张图片是否一样是很难的,目前应该还没有这方面成熟的技术。
图像识别算法:1人脸识别类(Eigenface,Fisherface算法特别多),人脸检测类(j-v算法,mtcnn)2车牌识别类,车型识别类(cnn)3字符识别(cnn)。。。。。。
无论什么识别算法:本质都是对图像(多维度矩阵)的分类或者拟合算法。那么如何设计一个函数,让不同的矩阵输入进去,得到相应的分类结果和拟合结果呢?
一般的方案是,a先对图像做预处理(边缘检测,滤波操作,二值化等,图像缩放,归一化等)b提取特征。
(对预处理后的图像进一步降低起数据维度,比如lbp特征,hog特征等)c采用机器学习的方法进行分类或者拟合(svm,bp,逻辑回归等)
图像相似度计算主要用于对于两幅图像之间内容的相似程度进行打分,根据分数的高低来判断图像内容的相近程度。
可以用于计算机视觉中的检测跟踪中目标位置的获取,根据已有模板在图像中找到一个与之最接近的区域。然后一直跟着。
已有的一些算法比如BlobTracking,Meanshift,Camshift,粒子滤波等等也都是需要这方面的理论去支撑。还有一方面就是基于图像内容的图像检索,也就是通常说的以图检图。
比如给你某一个人在海量的图像数据库中罗列出与之最匹配的一些图像,当然这项技术可能也会这样做,将图像抽象为几个特征值,比如Trace变换,图像哈希或者Sift特征向量等等,来根据数据库中存得这些特征匹配再返回相应的图像来提高效率。
(1)直方图匹配。比如有图像A和图像B,分别计算两幅图像的直方图,HistA,HistB,然后计算两个直方图的归一化相关系数(巴氏距离,直方图相交距离)等等。
这种思想是基于简单的数学上的向量之间的差异来进行图像相似程度的度量,这种方法是目前用的比较多的一种方法,第一,直方图能够很好的归一化,比如通常的256个bin条的。
那么两幅分辨率不同的图像可以直接通过计算直方图来计算相似度很方便。而且计算量比较小。
。
这种以图搜图可以用感知哈希算法,第一步缩小图片尺寸将图片缩小到8x8的尺寸,总共64个像素.这一步的作用是去除各种图片尺寸和图片比例的差异,只保留结构、明暗等基本信息.第二步转为灰度图片将缩小后的图片,转为64级灰度图片.第三步计算灰度平均值计算图片中所有像素的灰度平均值第四步比较像素的灰度将每个像素的灰度与平均值进行比较,如果大于或等于平均值记为1,小于平均值记为0.第五步计算哈希值将上一步的比较结果,组合在一起,就构成了一个64位的二进制整数,这就是这张图片的指纹.第六步对比图片指纹得到图片的指纹后,就可以对比不同的图片的指纹,计算出64位中有多少位是不一样的.如果不相同的数据位数不超过5,就说明两张图片很相似,如果大于10,说明它们是两张不同的图片.具体的c#代码可以看using System;using ;using System.Drawing; namespace SimilarPhoto{ class SimilarPhoto { Image SourceImg; public SimilarPhoto(string filePath) { SourceImg = Image.FromFile(filePath); } public SimilarPhoto(Stream stream) { SourceImg = Image.FromStream(stream); } public String GetHash() { Image image = ReduceSize(); Byte[] grayValues = ReduceColor(image); Byte average = CalcAverage(grayValues); String reslut = ComputeBits(grayValues, average); return reslut; } // Step 1 : Reduce size to 8*8 private Image ReduceSize(int width = 8, int height = 8) { Image image = SourceImg.GetThumbnailImage(width, height, () => { return false; }, ); return image; } // Step 2 : Reduce Color private Byte[] ReduceColor(Image image) { Bitmap bitMap = new Bitmap(image); Byte[] grayValues = new Byte[image.Width * image.Height]; for(int x = 0; x。
。
图像1和2为RGB图,放在m文件夹下;直接输入二值的话就不用im2bw了,pio是相似比I1=imread('1.jpg');I2=imread('2.jpg');I1_bw=im2bw(I1);%%二值化I2_bw=im2bw(I2);[h,w]=size(I1_bw);%%获取图的宽高h/wsum=0;fori=1:hforj=1:wifI1_bw(i,j)==I2_bw(i,j)%%逐点比较相似sum=sum+1;endendendpio=double(sum)/h/w;。