数学建模之Python-熵值法算法及代码实现

前言:

原文链接:https://blog.csdn.net/qq_24975309/article/details/82026022

此博客借鉴一下大佬的

熵值法是计算指标权重的经典算法之一,它是指用来判断某个指标的离散程度的数学方法。离散程度越大,即信息量越大,不确定性就越小,熵也就越小;信息量越小,不确定性越大,熵也越大。根据熵的特性,我们可以通过计算熵值来判断一个事件的随机性及无序程度,也可以用熵值来判断某个指标的离散程度,指标的离散程度越大,该指标对综合评价的影响越大。

理论(word直接抄):

数学建模之Python-熵值法算法及代码实现_第1张图片
数学建模之Python-熵值法算法及代码实现_第2张图片

数学建模之Python-熵值法算法及代码实现_第3张图片

代码:

# !/usr/bin/python
# -*- coding: utf-8 -*-

"""
Created on Fri Mar 23 10:48:36 2018
@author: Big Teacher Brother
"""
import pandas as pd
import numpy as np
import math
from numpy import array

# 1读取数据
df = pd.read_csv('熵值法.csv', encoding='gb2312')
# 2数据预处理 ,去除空值的记录
df.dropna()


# 定义熵值法函数
def cal_weight(x):
    '''熵值法计算变量的权重'''
    # 标准化
    x = x.apply(lambda x: ((x - np.min(x)) / (np.max(x) - np.min(x))))

    # 求k
    rows = x.index.size  # 行
    cols = x.columns.size  # 列
    k = 1.0 / math.log(rows)

    lnf = [[None] * cols for i in range(rows)]

    # 矩阵计算--
    # 信息熵
    # p=array(p)
    x = array(x)
    lnf = [[None] * cols for i in range(rows)]
    lnf = array(lnf)
    for i in range(0, rows):
        for j in range(0, cols):
            if x[i][j] == 0:
                lnfij = 0.0
            else:
                p = x[i][j] / x.sum(axis=0)[j]
                lnfij = math.log(p) * p * (-k)
            lnf[i][j] = lnfij
    lnf = pd.DataFrame(lnf)
    E = lnf

    # 计算冗余度
    d = 1 - E.sum(axis=0)
    # 计算各指标的权重
    w = [[None] * 1 for i in range(cols)]
    for j in range(0, cols):
        wj = d[j] / sum(d)
        w[j] = wj
        # 计算各样本的综合得分,用最原始的数据

    w = pd.DataFrame(w)
    return w


if __name__ == '__main__':
    # 计算df各字段的权重
    w = cal_weight(df)  # 调用cal_weight
    w.index = df.columns
    w.columns = ['weight']
    print(w)
    print('运行完成!')


数据集:

var1,var2,var3,var4,var5,var6
171.33,151.33,0.28,0,106.36,0.05
646.66,370,1.07,61,1686.79,1.64
533.33,189.66,0.59,0,242.31,0.57
28.33,0,0.17,0,137.85,2.29
620,234,0.88,41.33,428.33,0.13
192.33,177.66,0.16,0,128.68,1.07
111,94,0.18,0,234.27,0.22
291,654,1.21,65.66,2.26,0
421.33,247,0.7,0,0.4,0
193,288.66,0.16,0,0,0
82.33,118,0.11,0,758.41,0.24
649.66,648.66,0.54,0,13.35,0.11
37.66,103.33,0.12,0,1133.51,1.1
183.33,282.33,0.55,0,624.73,1.04
1014.66,1264.66,5.07,814.66,0,0
90.66,134,0.3,0,0.15,0
200.66,98.33,0.33,0,681.54,0.51
540.66,558.66,1.08,62,2.71,0.09
80,60.66,0.13,0,910.19,0.88
530.66,281.33,0.88,36,743.21,0.72
166,133,0.13,0,246.88,2.05
377.66,310.33,0.57,0,102.89,0.57
143.33,73,0.23,0,103.94,0.1
394.66,473.66,0.56,0,1.06,0.03
535.66,447.33,0.44,0,10.59,0.08
52.66,56.66,0.52,0,0,0
1381.66,760.66,2.3,781.66,248.71,0.13
44.33,42.33,0.07,0,0.66,0
71.66,62.66,0.11,0,535.26,0.52
148.33,56.66,0.24,0,173.83,0.16

补充一下此代码中用到了归一化的预处理方法,不是z-score,下面是两种方法的对比:
在这里插入图片描述
数学建模之Python-熵值法算法及代码实现_第4张图片

你可能感兴趣的:(Python机器学习与数学建模)