语音信号处理之时域分析-过零率及其Python实现

过零率(Zero Crossing Rate)

概念:过零率(Zero Crossing Rate,ZCR)是指在每帧中,语音信号通过零点(从正变为负或从负变为正)的次数。 这个特征已在语音识别和音乐信息检索领域得到广泛使用,是对敲击的声音的分类的关键特征。

ZCR的数学形式化定义为:

zcr=1T1T1t=1π{stst1<0} zcr=1T−1∑t=1T−1π{stst−1<0}.
其中 s s是采样点的值, T T为帧长,函数 π{A} π{A}在A为真是值为1,否则为0.

特性:
(1).一般而言,清音(unvoiced sound)和环境噪音的ZCR都大于浊音(voiced sound);
(2).由于清音和环境噪音的ZCR大小相近,因而不能够通过ZCR来区分它们;
(3).在实际当中,过零率经常与短时能量特性相结合来进行端点检测,尤其是ZCR用来检测清音的起止点;
(4).有时也可以用ZCR来进行粗略的基频估算,但这是非常不可靠的,除非有后续的修正(refine)处理过程。

ZCR的Python实现

ZCR的Python实现如下:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
import math
import numpy as np

def ZeroCR(waveData,frameSize,overLap):
    wlen = len(waveData)
    step = frameSize - overLap
    frameNum = math.ceil(wlen/step)
    zcr = np.zeros((frameNum,1))
    for i in range(frameNum):
        curFrame = waveData[np.arange(i*step,min(i*step+frameSize,wlen))]
        #To avoid DC bias, usually we need to perform mean subtraction on each frame
        #ref: http://neural.cs.nthu.edu.tw/jang/books/audiosignalprocessing/basicFeatureZeroCrossingRate.asp
        curFrame = curFrame - np.mean(curFrame) # zero-justified
        zcr[i] = sum(curFrame[0:-1]*curFrame[1::]<=0)
    return zcr

对于给定语音文件aeiou.wav,利用上面的函数计算ZCR的代码如下:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
import math
import wave
import numpy as np
import pylab as pl

# ============ test the algorithm =============
# read wave file and get parameters.
fw = wave.open('aeiou.wav','rb')
params = fw.getparams()
print(params)
nchannels, sampwidth, framerate, nframes = params[:4]
str_data = fw.readframes(nframes)
wave_data = np.fromstring(str_data, dtype=np.short)
wave_data.shape = -1, 1
#wave_data = wave_data.T
fw.close()

# calculate Zero Cross Rate
frameSize = 256
overLap = 0
zcr = ZeroCR(wave_data,frameSize,overLap)

# plot the wave
time = np.arange(0, len(wave_data)) * (1.0 / framerate)
time2 = np.arange(0, len(zcr)) * (len(wave_data)/len(zcr) / framerate)
pl.subplot(211)
pl.plot(time, wave_data)
pl.ylabel("Amplitude")
pl.subplot(212)
pl.plot(time2, zcr)
pl.ylabel("ZCR")
pl.xlabel("time (seconds)")
pl.show()

运行以上程序得到下图:

语音信号处理之时域分析-过零率及其Python实现_第1张图片

参考(References)

[1]Zero Crossing Rate (過零率): http://neural.cs.nthu.edu.tw/jang/books/audiosignalprocessing/basicFeatureZeroCrossingRate.asp?title=5-3%20Zero%20Crossing%20Rate%20(%B9L%B9s%B2v)&language=english
[2]Wiki: http://zh.wikipedia.org/zh/过零率

Original Link:  http://ibillxia.github.io/blog/2013/05/15/audio-signal-processing-time-domain-ZeroCR-python-realization/
Attribution - NON-Commercial - ShareAlike - Copyright ©  Bill Xia

 Posted in assp Tagged with Python, Speech, 信号处理, 过零率

你可能感兴趣的:(语音识别,过零率,python)