传统的方式来进行测试
在 main 函数中,调用 addUpper 函数,看看实际输出的结果是否和预期的结果一致,如果一致, 则说明函数正确,否则函数有错误,然后修改错误
//一个被测试函数
func addUpper(n int) int {
res := 0
for i := 1; i <= n - 1; i++ {
res += i
}
return res
}
func addUpper2(n int) int {
res := 0
for i := 1; i <= n - 1; i++ {
res += i
}
return res
}
func main() {
//传统的测试方法,就是在main函数中使用看看结果是否正确
// res := addUpper(10) // 1.+ 10 = 55
// if res != 55 {
// fmt.Printf("addUpper错误 返回值=%v 期望值=%v\n", res, 55)
// } else {
// fmt.Printf("addUpper正确 返回值=%v 期望值=%v\n", res, 55)
// }
}
传统方法的缺点分析
1)不方便, 我们需要在 main 函数中去调用,这样就需要去修改 main 函数,如果现在项目正在运 行,就可能去停止项目。
2)不利于管理,因为当我们测试多个函数或者多个模块时,都需要写在 main 函数,不利于我们管 理和清晰我们思路
3)引出单元测试。-> testing 测试框架 可以很好解决问题。
Go 语言中自带有一个轻量级的测试框架 testing 和自带的 go test 命令来实现单元测试和性能测试,testing 框架和其他语言中的测试框架类似,可以基于这个框架写针对相应函数的测试用例,也可以基 于该框架写相应的压力测试用例。通过单元测试,可以解决如下问题:
1)确保每个函数是可运行,并且运行结果是正确的
2)确保写出来的代码性能是好的,
3)单元测试能及时的发现程序设计或实现的逻辑错误,使问题及早暴露,便于问题的定位解决, 而性能测试的重点在于发现程序设计上的一些问题,让程序能够在高并发的情况下还能保持稳定
package cal
import (
"fmt"
"testing" //引入go 的testing框架包
)
//编写要给测试用例,去测试addUpper是否正确
func TestAddUpper(t *testing.T) {
//调用
res := addUpper(10)
if res != 55 {
//fmt.Printf("AddUpper(10) 执行错误,期望值=%v 实际值=%v\n", 55, res)
t.Fatalf("AddUpper(10) 执行错误,期望值=%v 实际值=%v\n", 55, res)
}
//如果正确,输出日志
t.Logf("AddUpper(10) 执行正确...")
}
func TestHello(t *testing.T) {
fmt.Println("TestHello被调用..")
}
1)测试用例文件名必须以 _test.go 结尾。 比如 cal_test.go , cal 不是固定的。
2)测试用例函数必须以 Test 开头,一般来说就是 Test+被测试的函数名,比如 TestAddUpper
3)TestAddUpper(t *tesing.T) 的形参类型必须是 *testing.T 【看一下手册】
4)一个测试用例文件中,可以有多个测试用例函数,比如 TestAddUpper、TestSub
5)运行测试用例指令 (1) cmd>go test [如果运行正确,无日志,错误时,会输出日志] (2) cmd>go test -v [运行正确或是错误,都输出日志]
6)当出现错误时,可以使用 t.Fatalf 来格式化输出错误信息,并退出程序
7)t.Logf 方法可以输出相应的日志
8)测试用例函数,并没有放在 main 函数中,也执行了,这就是测试用例的方便之处[原理图].
9)PASS 表示测试用例运行成功,FAIL 表示测试用例运行失败
10)测试单个文件,一定要带上被测试的原文件 go test -v cal_test.go cal.go
11)测试单个方法 go test -v -test.run TestAddUpper
//编写一个函数,每隔1秒输出 "hello,world"
func test() {
for i := 1; i <= 10; i++ {
fmt.Println("tesst () hello,world " + strconv.Itoa(i))
time.Sleep(time.Second)
}
}
func main() {
go test() // 开启了一个协程
for i := 1; i <= 10; i++ {
fmt.Println(" main() hello,golang" + strconv.Itoa(i))
time.Sleep(time.Second)
}
}
1)主线程是一个物理线程,直接作用在 cpu 上的。是重量级的,非常耗费 cpu 资源。
2)协程从主线程开启的,是轻量级的线程,是逻辑态。对资源消耗相对小。
3)Golang 的协程机制是重要的特点,可以轻松的开启上万个协程。其它编程语言的并发机制是一 般基于线程的,开启过多的线程,资源耗费大,这里就突显 Golang 在并发上的优势了
func main() {
cpuNum := runtime.NumCPU()
fmt.Println("cpuNum=", cpuNum)
//可以自己设置使用多个cpu
runtime.GOMAXPROCS(cpuNum - 1)
fmt.Println("ok")
}
不同 goroutine 之间如何通讯
1)全局变量的互斥锁
2)使用管道 channel 来解决
因为没有对全局变量 m 加锁,因此会出现资源争夺问题,代码会出现错误,提示 concurrent map writes
解决方案:加入互斥锁
我们的数的阶乘很大,结果会越界,可以将求阶乘改成 sum += uint64(i)
// 思路
// 1. 编写一个函数,来计算各个数的阶乘,并放入到 map中.
// 2. 我们启动的协程多个,统计的将结果放入到 map中
// 3. map 应该做出一个全局的.
var (
myMap = make(map[int]int, 10)
//声明一个全局的互斥锁
//lock 是一个全局的互斥锁,
//sync 是包: synchornized 同步
//Mutex : 是互斥
lock sync.Mutex
)
// test 函数就是计算 n!, 让将这个结果放入到 myMap
func test(n int) {
res := 1
for i := 1; i <= n; i++ {
res *= i
}
//这里我们将 res 放入到myMap
//加锁
lock.Lock()
myMap[n] = res //concurrent map writes?
//解锁
lock.Unlock()
}
func main() {
// 我们这里开启多个协程完成这个任务[200个]
for i := 1; i <= 20; i++ {
go test(i)
}
//休眠10秒钟【第二个问题 】
//time.Sleep(time.Second * 5)
//这里我们输出结果,变量这个结果
lock.Lock()
for i, v := range myMap {
fmt.Printf("map[%d]=%d\n", i, v)
}
lock.Unlock()
}
1)前面使用全局变量加锁同步来解决 goroutine 的通讯,但不完美
2)主线程在等待所有 goroutine 全部完成的时间很难确定,我们这里设置 10 秒,仅仅是估算。 3)如果主线程休眠时间长了,会加长等待时间,如果等待时间短了,可能还有 goroutine 处于工作 状态,这时也会随主线程的退出而销毁
4)通过全局变量加锁同步来实现通讯,也并不利用多个协程对全局变量的读写操作。 5) 上面种种分析都在呼唤一个新的通讯机制-channel
1)channle 本质就是一个数据结构-队列【示意图】
2)数据是先进先出【FIFO : first in first out】
3)线程安全,多 goroutine 访问时,不需要加锁,就是说 channel 本身就是线程安全的
4)channel 有类型的,一个 string 的 channel 只能存放 string 类型数据。
channel 是引用类型
channel 必须初始化才能写入数据, 即 make 后才能使用 管道是有类型的,intChan 只能写入 整数 int
func main() {
//演示一下管道的使用
//1. 创建一个可以存放3个int类型的管道
var intChan chan int
intChan = make(chan int, 3)
//2. 看看intChan是什么
fmt.Printf("intChan 的值=%v intChan本身的地址=%p\n", intChan, &intChan)
//3. 向管道写入数据
intChan<- 10
num := 211
intChan<- num
intChan<- 50
// //如果从channel取出数据后,可以继续放入
<-intChan
intChan<- 98//注意点, 当我们给管写入数据时,不能超过其容量
//4. 看看管道的长度和cap(容量)
fmt.Printf("channel len= %v cap=%v \n", len(intChan), cap(intChan)) // 3, 3
//5. 从管道中读取数据
var num2 int
num2 = <-intChan
fmt.Println("num2=", num2)
fmt.Printf("channel len= %v cap=%v \n", len(intChan), cap(intChan)) // 2, 3
//6. 在没有使用协程的情况下,如果我们的管道数据已经全部取出,再取就会报告 deadlock
num3 := <-intChan
num4 := <-intChan
//num5 := <-intChan
fmt.Println("num3=", num3, "num4=", num4/*, "num5=", num5*/)
}
1)channel 中只能存放指定的数据类型
2)channle 的数据放满后,就不能再放入了
3)如果从 channel 取出数据后,可以继续放入
4)在没有使用协程的情况下,如果 channel 数据取完了,再取,就会报 dead lock
channel 的关闭
使用内置函数 close 可以关闭 channel, 当 channel 关闭后,就不能再向 channel 写数据了,但是仍然 可以从该 channel 读取数据
intChan := make(chan int, 3)
intChan<- 100
intChan<- 200
close(intChan) // close
//这是不能够再写入数到channel
//intChan<- 300
fmt.Println("okook~")
//当管道关闭后,读取数据是可以的
n1 := <-intChan
fmt.Println("n1=", n1)
channel 的遍历
channel 支持 for–range 的方式进行遍历,请注意两个细节
1)在遍历时,如果 channel 没有关闭,则回出现 deadlock 的错误
2)在遍历时,如果 channel 已经关闭,则会正常遍历数据,遍历完后,就会退出遍历。
//遍历管道
intChan2 := make(chan int, 100)
for i := 0; i < 100; i++ {
intChan2<- i * 2 //放入100个数据到管道
}
//遍历管道不能使用普通的 for 循环
// for i := 0; i < len(intChan2); i++ {
// }
//在遍历时,如果channel没有关闭,则会出现deadlock的错误
//在遍历时,如果channel已经关闭,则会正常遍历数据,遍历完后,就会退出遍历
close(intChan2)
for v := range intChan2 {
fmt.Println("v=", v)
}
//write Data
func writeData(intChan chan int) {
for i := 1; i <= 50; i++ {
//放入数据
intChan<- i //
fmt.Println("writeData ", i)
//time.Sleep(time.Second)
}
close(intChan) //关闭
}
//read data
func readData(intChan chan int, exitChan chan bool) {
for {
v, ok := <-intChan
if !ok {
break
}
time.Sleep(time.Second)
fmt.Printf("readData 读到数据=%v\n", v)
}
//readData 读取完数据后,即任务完成
exitChan<- true
close(exitChan)
}
func main() {
//创建两个管道
intChan := make(chan int, 10)
exitChan := make(chan bool, 1)
go writeData(intChan)
go readData(intChan, exitChan)
//time.Sleep(time.Second * 10)
for {
_, ok := <-exitChan
if !ok {
break
}
}
}
//向 intChan放入 1-8000个数
func putNum(intChan chan int) {
for i := 1; i <= 80000; i++ {
intChan<- i
}
//关闭intChan
close(intChan)
}
// 从 intChan取出数据,并判断是否为素数,如果是,就
// //放入到primeChan
func primeNum(intChan chan int, primeChan chan int, exitChan chan bool) {
//使用for 循环
// var num int
var flag bool //
for {
//time.Sleep(time.Millisecond * 10)
num, ok := <-intChan //intChan 取不到..
if !ok {
break
}
flag = true //假设是素数
//判断num是不是素数
for i := 2; i < num; i++ {
if num % i == 0 {//说明该num不是素数
flag = false
break
}
}
if flag {
//将这个数就放入到primeChan
primeChan<- num
}
}
fmt.Println("有一个primeNum 协程因为取不到数据,退出")
//这里我们还不能关闭 primeChan
//向 exitChan 写入true
exitChan<- true
}
func main() {
intChan := make(chan int , 1000)
primeChan := make(chan int, 20000)//放入结果
//标识退出的管道
exitChan := make(chan bool, 8) // 4个
start := time.Now().Unix()
//开启一个协程,向 intChan放入 1-8000个数
go putNum(intChan)
//开启4个协程,从 intChan取出数据,并判断是否为素数,如果是,就
//放入到primeChan
for i := 0; i < 8; i++ {
go primeNum(intChan, primeChan, exitChan)
}
//这里我们主线程,进行处理
//直接
go func(){
for i := 0; i < 8; i++ {
<-exitChan
}
end := time.Now().Unix()
fmt.Println("使用协程耗时=", end - start)
//当我们从exitChan 取出了4个结果,就可以放心的关闭 prprimeChan
close(primeChan)
}()
//遍历我们的 primeChan ,把结果取出
for {
_, ok := <-primeChan
if !ok{
break
}
//将结果输出
//fmt.Printf("素数=%d\n", res)
}
fmt.Println("main线程退出")
}
1)channel 可以声明为只读,或者只写性质
//1. 在默认情况下下,管道是双向
//var chan1 chan int //可读可写
//2 声明为只写
var chan2 chan<- int
chan2 = make(chan int, 3)
chan2<- 20
//num := <-chan2 //error
fmt.Println("chan2=", chan2)
//3. 声明为只读
var chan3 <-chan int
num2 := <-chan3
//chan3<- 30 //err
fmt.Println("num2", num2)
func main() {
//使用select可以解决从管道取数据的阻塞问题
//1.定义一个管道 10个数据int
intChan := make(chan int, 10)
for i := 0; i < 10; i++ {
intChan<- i
}
//2.定义一个管道 5个数据string
stringChan := make(chan string, 5)
for i := 0; i < 5; i++ {
stringChan <- "hello" + fmt.Sprintf("%d", i)
}
//传统的方法在遍历管道时,如果不关闭会阻塞而导致 deadlock
//问题,在实际开发中,可能我们不好确定什么关闭该管道.
//可以使用select 方式可以解决
//label:
for {
select {
//注意: 这里,如果intChan一直没有关闭,不会一直阻塞而deadlock
//,会自动到下一个case匹配
case v := <-intChan :
fmt.Printf("从intChan读取的数据%d\n", v)
time.Sleep(time.Second)
case v := <-stringChan :
fmt.Printf("从stringChan读取的数据%s\n", v)
time.Sleep(time.Second)
default :
fmt.Printf("都取不到了,不玩了, 程序员可以加入逻辑\n")
time.Sleep(time.Second)
return
//break label
}
}
}
//函数
func sayHello() {
for i := 0; i < 10; i++ {
time.Sleep(time.Second)
fmt.Println("hello,world")
}
}
//函数
func test() {
//这里我们可以使用defer + recover
defer func() {
//捕获test抛出的panic
if err := recover(); err != nil {
fmt.Println("test() 发生错误", err)
}
}()
//定义了一个map
var myMap map[int]string
myMap[0] = "golang" //error
}
func main() {
go sayHello()
go test()
for i := 0; i < 10; i++ {
fmt.Println("main() ok=", i)
time.Sleep(time.Second)
}
}