GEE-Python 遥感大数据处理

目前,GEE以其强大的功能受到了国外越来越多的科技工作者的重视和应用,然而在国内应用还十分有限。GEE提供了基于Javascript和Python语言的API,前者是官方主推平台的编程语言,易于上手但在输入输出和绘图可视化等方面存在不足,而Python作为目前最受欢迎的编程语言,能够弥补Javascript在这方面存在的不足,且更方便批处理和机器学习。前期我们开展了基于Javascript的GEE遥感大数据处理的学习,应广大科学工作者的要求,基于最热门的Python编程语言,从GEE-Python平台搭建、影像数据分析、本地和云端数据管理,以及云端数据论文出版级可视化等方面结合案例进行讲解和进阶训练,掌握实际操作能力。本次学习比较适合拥有一定GEE和Python基础,或对编程有强烈兴趣的同学。

第一章 理论基础
1、国外Earth Engine(GEE)平台及应用、主要数据资源介绍
2、GEE遥感云重要概念、数据类型与对象等
3、JavaScript与Python遥感云编程比较与选择
4、Python基础(语法、数据类型与程序控制结构、函数及类与对象等)
5、常用Python软件包((pandas、numpy、os等)介绍及基本功能演示(Excel/csv数据文件读取与数据处理、目录操作等)
6、JavaScript和Python遥感云API差异,学习方法及资源推荐

第二章 开发环境搭建
1、本地端与云端Python遥感云开发环境介绍
2、本地端开发环境搭建
1)Anaconda安装,pip/conda软件包安装方法和虚拟环境创建等;
2)earthengine-api、geemap等必备软件包安装;
3)遥感云本地端授权管理;
4)Jupyter Notebook/Visual Studio Code安装及运行调试。
3、云端Colab开发环境搭建
4、geemap介绍及常用功能演示

第三章 遥感大数据处理基础
1、遥感云平台影像数据分析处理流程介绍
2、要素和影像等对象显示和属性字段探索
3、影像/要素集的时间、空间和属性过滤方法
4、波段运算、条件运算、植被指数计算、裁剪和镶嵌等
5、Landsat /Sentinel-2等常用光学影像去云
6、影像与要素集的迭代循环
7、影像数据整合(Reducer)
8、邻域分析与空间统计
9、常见错误与代码优化
10、Python遥感云数据分析专属包构建

第四章 典型案例操作实践
1、机器学习分类算法案例:以柬埔寨为例,联合Landsat等长时间序列影像和机器学习算法进行分类,分类后处理和精度评估。涉及研究区影像统计、空间分层随机抽样、样本随机切分、时间序列影像预处理和合成、机器学习算法应用、分类后处理和精度评估等。
2、决策树森林分类算法案例:联合L波段雷达和Landsat光学时间序列影像和决策树分类算法提取指定地区2007-2020年度森林分布图,与JAXA年度森林产品进行空间比较,并分析森林的时空变化。内容涉及多源数据联合使用、决策树分类算法构建、阈值动态优化、分类结果空间分析等。
3、洪涝灾害监测案例:基于Sentinel-1 C波段雷达等影像,监测河南新乡市2021年7月份的特大暴雨灾害。涉及Sentinel-1 C影像处理,水体分类算法构建、影像差异分析,结果可视化等。
4、干旱遥感监测案例:联合具有数十年历史的卫星遥感降雨数据产品如CHIRPS来监测云南省2010年的特大干旱情况。涉及气象数据基本处理、年和月尺度数据整合、长期平均值LPA/偏差计算,数据结果可视化等。
5、物候特征分析案例:基于Landsat和MODIS等时间序列影像,通过植被指数变化分析典型地表植被多年的物候差异(样点尺度)和大尺度(如中国)的物候空间变化特征。涉及时间序列影像合成、影像平滑(Smoothing)与间隙填充(Gap-filling)、结果可视化等。
6、森林植被健康状态监测案例:利用20年的MODIS植被指数,对选定区域的森林健康状态进行长期监测,分析森林植被绿化或褐变情况。涉及影像连接、影像合成、趋势分析、空间统计和可视化等。
7、生态环境质量动态监测案例:利用RSEI遥感生态指数和Landsat系列影像对选定城市的生态状况进行快速监测。内容涉及植被指数计算、地表温度提取、数据归一化、主成分PCA分析、RSEI生态指数构建和结果可视化等。

第五章 输入输出及数据资产高效管
1.本地文本/矢量/栅格等数据与云端交互:包括本地端csv、kml、矢量和栅格数据与云端数据相互转换、数据导出等。
2.服务器端影像与影像集数据批量下载:包括直接本地下载、影像集批量下载,以及大尺度(如全球森林产品)和长时间序列数据(如20年的MODIS数据产品)快速下载的方法与技巧。
3.本地端矢量/影像数据上传个人资产及属性设置:包括earthengine命令使用,少量本地端矢量与栅格直接上传与属性设置(小文件)、本地端批量上传及属性自动设置,超大影像文件(如国产高分或无人机影像)快速上传技巧等。
4.遥感云个人数据资产管理: 联合Python和earthengine命令行管理个人数据资产,包括创建、删除、移动、重命名;上传/下载任务批量取消。

第六章 云端数据论文出版级可视化
1.Python可视化及主要软件包简介:matplotlib,seaborn可视化程序包介绍,基本图形概念、图形构成介绍,常用图形快速绘制等。
2.研究区地形及样地分布图绘制:结合本地或云端矢量文件、云端地形数据等绘制研究区示意图,涉及绘图流程、中文显示、配色美化,如cpt-city精美调色板palette在线下载与本地端应用等。
3.研究区域影像覆盖统计和绘图:对指定区域Landsat和Sentinel等系列影像的覆盖数量、无云影像覆盖情况进行统计,绘制区域影像统计图或像元级无云影像覆盖专题图。
4.样本光谱特征与物候特征等分析绘图:快速绘制不同类型样地的光谱和物候特征、动态下载并整合样点过去30年缩略图(thumbnails)和植被指数时间序列等。
5.分类结果专题图绘制及时空动态延时摄影Timelapse制作:单幅或多幅分类专题图绘制及配色美化,土地利用变化清晰Timelapse制作、动画文字添加等。
6.分类结果面积统计与绘图:基于云端的分类结果和矢量边界文件,统计不同区域不同地类面积,提取统计结果,以不同图形展示统计面积;土地利用变化统计绘图等。

GEE-Python 遥感大数据处理_第1张图片

GEE-Python 遥感大数据处理_第2张图片

GEE-Python 遥感大数据处理_第3张图片

你可能感兴趣的:(遥感,数据分析,数据挖掘,python)