✅作者简介:热爱科研的Matlab仿真开发者,修心和技术同步精进,matlab项目合作可私信。
个人主页:Matlab科研工作室
个人信条:格物致知。
更多Matlab仿真内容点击
智能优化算法 神经网络预测 雷达通信 无线传感器
信号处理 图像处理 路径规划 元胞自动机 无人机
针对基本灰狼优化算法在求解复杂问题时同样存在依赖初始种群,过早收敛,易陷入局部最优等缺点,提出一种改进的灰狼优化算法应用于求解函数优化问题中.该算法首先利用混沌Cat映射产生灰狼种群的初始位置,为算法全局搜索过程的种群多样性奠定基础;同时引入粒子群算法中的个体记忆功能以便增强算法的局部搜索能力和加快其收敛速度;最后采用高斯变异扰动和优胜劣汰选择规则对当前最优解进行变异操作以避免算法陷入局部最优.对13个基准测试函数进行仿真实验,结果表明,与基本GWO算法,PSO算法,GA算法以及ACO算法相比,该算法具有更好的求解精度和更快的收敛速度.
%___________________________________________________________________%
% Grey Wolf Optimizer (GWO) source codes version 1.0 %
% %
% Developed in MATLAB R2011b(7.13) %
% %
% Author and programmer: Seyedali Mirjalili %
% %
% e-Mail: [email protected] %
% %
% Homepage: http://www.alimirjalili.com %
% %
% Main paper: S. Mirjalili, S. M. Mirjalili, A. Lewis %
% Grey Wolf Optimizer, Advances in Engineering %
% Software , in press, %
% DOI: 10.1016/j.advengsoft.2013.12.007 %
% %
%___________________________________________________________________%
% Grey Wolf Optimizer
function [Alpha_score,Alpha_pos,Convergence_curve]=GWO(SearchAgents_no,Max_iter,lb,ub,dim,fobj)
% initialize alpha, beta, and delta_pos
Alpha_pos=zeros(1,dim);
Alpha_score=inf; %change this to -inf for maximization problems
Beta_pos=zeros(1,dim);
Beta_score=inf; %change this to -inf for maximization problems
Delta_pos=zeros(1,dim);
Delta_score=inf; %change this to -inf for maximization problems
%Initialize the positions of search agents
Positions=initialization(SearchAgents_no,dim,ub,lb);
Convergence_curve=zeros(1,Max_iter);
l=0;% Loop counter
% Main loop
while l for i=1:size(Positions,1) % Return back the search agents that go beyond the boundaries of the search space Flag4ub=Positions(i,:)>ub; Flag4lb=Positions(i,:) Positions(i,:)=(Positions(i,:).*(~(Flag4ub+Flag4lb)))+ub.*Flag4ub+lb.*Flag4lb; % Calculate objective function for each search agent fitness=fobj(Positions(i,:)); % Update Alpha, Beta, and Delta if fitness Alpha_score=fitness; % Update alpha Alpha_pos=Positions(i,:); end if fitness>Alpha_score && fitness Beta_score=fitness; % Update beta Beta_pos=Positions(i,:); end if fitness>Alpha_score && fitness>Beta_score && fitness Delta_score=fitness; % Update delta Delta_pos=Positions(i,:); end end a=2-l*((2)/Max_iter); % a decreases linearly fron 2 to 0 % Update the Position of search agents including omegas for i=1:size(Positions,1) for j=1:size(Positions,2) r1=rand(); % r1 is a random number in [0,1] r2=rand(); % r2 is a random number in [0,1] A1=2*a*r1-a; % Equation (3.3) C1=2*r2; % Equation (3.4) D_alpha=abs(C1*Alpha_pos(j)-Positions(i,j)); % Equation (3.5)-part 1 X1=Alpha_pos(j)-A1*D_alpha; % Equation (3.6)-part 1 r1=rand(); r2=rand(); A2=2*a*r1-a; % Equation (3.3) C2=2*r2; % Equation (3.4) D_beta=abs(C2*Beta_pos(j)-Positions(i,j)); % Equation (3.5)-part 2 X2=Beta_pos(j)-A2*D_beta; % Equation (3.6)-part 2 r1=rand(); r2=rand(); A3=2*a*r1-a; % Equation (3.3) C3=2*r2; % Equation (3.4) D_delta=abs(C3*Delta_pos(j)-Positions(i,j)); % Equation (3.5)-part 3 X3=Delta_pos(j)-A3*D_delta; % Equation (3.5)-part 3 Positions(i,j)=(X1+X2+X3)/3;% Equation (3.7) end end l=l+1; Convergence_curve(l)=Alpha_score; end [1]徐辰华, 李成县, 喻昕,等. 基于Cat混沌与高斯变异的改进灰狼优化算法[J]. 计算机工程与应用, 2017, 53(4):10. ❤️ 关注我领取海量matlab电子书和数学建模资料 ❤️部分理论引用网络文献,若有侵权联系博主删除
⛄ 运行结果
⛄ 参考文献