解 如 ∑ n = 1 ∞ 1 n \displaystyle\sum\limits_{n=1}^\infty\cfrac{1}{n} n=1∑∞n1, ( A ) , ( C ) (A),(C) (A),(C)错误。
如 ∑ n = 1 ∞ ( − 1 ) n + 1 2 n \displaystyle\sum\limits_{n=1}^\infty\cfrac{(-1)^n+1}{2n} n=1∑∞2n(−1)n+1, ( B ) (B) (B)错误。
因 0 ⩽ u n ⩽ 1 n 0\leqslant u_n\leqslant\cfrac{1}{n} 0⩽un⩽n1,有 u n 2 ⩽ 1 n 2 u_n^2\leqslant\cfrac{1}{n^2} un2⩽n21,而 ∑ n = 1 ∞ 1 n 2 \displaystyle\sum\limits_{n=1}^\infty\cfrac{1}{n^2} n=1∑∞n21收敛,由正项级数的比较判别法知, ∑ n = 1 ∞ u n 2 \displaystyle\sum\limits_{n=1}^\infty u_n^2 n=1∑∞un2收敛,故 ∑ n = 1 ∞ ( − 1 ) n u n 2 \displaystyle\sum\limits_{n=1}^\infty(-1)^nu_n^2 n=1∑∞(−1)nun2绝对收敛,从而收敛,故选 ( D ) (D) (D)。(这道题主要利用了反例求解)
解
n + 1 3 − n 3 = 1 ( n + 1 ) 2 3 + n ( n + 1 ) 3 + n 2 3 ⩾ 1 3 ( n + 1 ) 2 3 \sqrt[3]{n+1}-\sqrt[3]{n}=\cfrac{1}{\sqrt[3]{(n+1)^2}+\sqrt[3]{n(n+1)}+\sqrt[3]{n^2}}\geqslant\cfrac{1}{3\sqrt[3]{(n+1)^2}} 3n+1−3n=3(n+1)2+3n(n+1)+3n21⩾33(n+1)21
又 ∑ n = 1 ∞ 1 ( n + 1 ) 2 3 = ∑ n = 2 ∞ 1 n 2 3 \displaystyle\sum\limits_{n=1}^\infty\cfrac{1}{(n+1)^{\frac{2}{3}}}=\displaystyle\sum\limits_{n=2}^\infty\cfrac{1}{n^{\frac{2}{3}}} n=1∑∞(n+1)321=n=2∑∞n321发散,由比较判别法知, ∑ n = 1 ∞ ( n + 1 3 − n 3 ) \displaystyle\sum\limits_{n=1}^\infty(\sqrt[3]{n+1}-\sqrt[3]{n}) n=1∑∞(3n+1−3n)发散。(这道题主要利用了分子有理化求解)
解 由题设条件 ∑ n = 1 ∞ a n \displaystyle\sum\limits_{n=1}^\infty a_n n=1∑∞an收敛,可知 ∑ n = 1 ∞ a n x n \displaystyle\sum\limits_{n=1}^\infty a_nx^n n=1∑∞anxn的收敛半径 R = 1 R=1 R=1。若 R < 1 R<1 R<1,则 ∑ n = 1 ∞ a n x n ∣ x = 1 = ∑ n = 1 ∞ a n \displaystyle\sum\limits_{n=1}^\infty a_nx^n\biggm\vert_{x=1}=\displaystyle\sum\limits_{n=1}^\infty a_n n=1∑∞anxn∣∣∣∣x=1=n=1∑∞an发散,与已知矛盾;若 R > 1 R>1 R>1,则 ∑ n = 1 ∞ a n x n ∣ x = 1 = ∑ n = 1 ∞ a n \displaystyle\sum\limits_{n=1}^\infty a_nx^n\biggm\vert_{x=1}=\displaystyle\sum\limits_{n=1}^\infty a_n n=1∑∞anxn∣∣∣∣x=1=n=1∑∞an绝对收敛,与已知矛盾。
由于 ∑ n = 1 ∞ n a n x n = x ∑ n = 1 ∞ n a n x x − 1 = x ∑ n = 1 ∞ ( a n x n ) ′ \displaystyle\sum\limits_{n=1}^\infty na_nx^n=x\displaystyle\sum\limits_{n=1}^\infty na_nx^{x-1}=x\displaystyle\sum\limits_{n=1}^\infty(a_nx^n)' n=1∑∞nanxn=xn=1∑∞nanxx−1=xn=1∑∞(anxn)′的收敛半径与 ∑ n = 1 ∞ a n x n \displaystyle\sum\limits_{n=1}^\infty a_nx^n n=1∑∞anxn收敛半径相同,即 R = 1 R=1 R=1,收敛区间为 ( − 1 , 1 ) (-1,1) (−1,1)。
当 x 1 = 3 x_1=\sqrt{3} x1=3时,考察 ∑ n = 1 ∞ n a n ( x − 1 ) n \displaystyle\sum\limits_{n=1}^\infty na_n(x-1)^n n=1∑∞nan(x−1)n,由于 ∣ 3 − 1 ∣ < 1 |\sqrt3-1|<1 ∣3−1∣<1,因此 ∑ n = 1 ∞ n a n ( x − 1 ) n \displaystyle\sum\limits_{n=1}^\infty na_n(x-1)^n n=1∑∞nan(x−1)n在 x 1 = 3 x_1=\sqrt{3} x1=3处绝对收敛;
当 x 2 = 3 x_2=3 x2=3时,考察 ∑ n = 1 ∞ n a n ( x − 1 ) n \displaystyle\sum\limits_{n=1}^\infty na_n(x-1)^n n=1∑∞nan(x−1)n,由于 ∣ 3 − 1 ∣ > 1 |3-1|>1 ∣3−1∣>1,因此 ∑ n = 1 ∞ n a n ( x − 1 ) n \displaystyle\sum\limits_{n=1}^\infty na_n(x-1)^n n=1∑∞nan(x−1)n在 x 2 = 3 x_2=3 x2=3处发散。(这道题主要利用了分类讨论求解)
解 因为只有当级数收敛时,才能比较其和的大小,故 ( A ) (A) (A)错误。
若取级数 ∑ n = 1 ∞ ( − 1 n ) \displaystyle\sum\limits_{n=1}^\infty\left(-\cfrac{1}{n}\right) n=1∑∞(−n1)与 ∑ n = 1 ∞ 1 n 2 \displaystyle\sum\limits_{n=1}^\infty\cfrac{1}{n^2} n=1∑∞n21,可见 ( B ) (B) (B)错误。
若取级数 ∑ n = 1 ∞ ( − 1 ) n n \displaystyle\sum\limits_{n=1}^\infty\cfrac{(-1)^n}{\sqrt{n}} n=1∑∞n(−1)n与 ∑ n = 1 ∞ [ ( − 1 ) n n + 1 n ] \displaystyle\sum\limits_{n=1}^\infty\left[\cfrac{(-1)^n}{\sqrt{n}}+\cfrac{1}{n}\right] n=1∑∞[n(−1)n+n1],可见 ( C ) (C) (C)错误。
故选 ( D ) (D) (D)。(这道题主要利用了反例求解)
解 由 f n ′ ( x ) = x ( 1 − x ) sin 2 n x = 0 f'_n(x)=x(1-x)\sin^{2n}x=0 fn′(x)=x(1−x)sin2nx=0,解得函数 f n ( x ) f_n(x) fn(x)在 ( 0 , + ∞ ) (0,+\infty) (0,+∞)内的所有驻点为 x 0 = 1 x_0=1 x0=1及 x k = k π , k = 1 , 2 , ⋯ x_k=k\pi,k=1,2,\cdots xk=kπ,k=1,2,⋯。易知, x 0 = 1 x_0=1 x0=1是 f n ( x ) f_n(x) fn(x)在 ( 0 , + ∞ ) (0,+\infty) (0,+∞)上的唯一极值点且为极大值点,所以 f n ( 1 ) f_n(1) fn(1)是 f n ( x ) f_n(x) fn(x)在 ( 0 , + ∞ ) (0,+\infty) (0,+∞)上的最大值。
解 因为 a n = f n ( 1 ) = ∫ 0 1 t ( 1 − t ) sin 2 n t d t ( n ⩾ 1 ) a_n=f_n(1)=\displaystyle\int^1_0t(1-t)\sin^{2n}t\mathrm{d}t(n\geqslant1) an=fn(1)=∫01t(1−t)sin2ntdt(n⩾1),且当 0 ⩽ t ⩽ π 2 0\leqslant t\leqslant\cfrac{\pi}{2} 0⩽t⩽2π时有 sin t ⩽ t \sin t\leqslant t sint⩽t,所以 0 ⩽ a n ⩽ ∫ 0 1 t ( 1 − t ) t 2 n d t = ∫ 0 1 t 2 n + 1 d t − ∫ 0 1 t 2 n + 2 d t = 1 2 n + 2 − 1 2 n + 3 ⩽ 1 n 2 0\leqslant a_n\leqslant\displaystyle\int^1_0t(1-t)t^{2n}\mathrm{d}t=\displaystyle\int^1_0t^{2n+1}\mathrm{d}t-\displaystyle\int^1_0t^{2n+2}\mathrm{d}t=\cfrac{1}{2n+2}-\cfrac{1}{2n+3}\leqslant\cfrac{1}{n^2} 0⩽an⩽∫01t(1−t)t2ndt=∫01t2n+1dt−∫01t2n+2dt=2n+21−2n+31⩽n21。利用比较判别法,由 ∑ n = 1 ∞ 1 n 2 \displaystyle\sum\limits_{n=1}^\infty\cfrac{1}{n^2} n=1∑∞n21收敛可知,级数 ∑ n = 1 ∞ a n \displaystyle\sum\limits_{n=1}^\infty a_n n=1∑∞an收敛。(这道题主要利用了放缩法求解)
解 由 f ( x ) f(x) f(x)为奇函数,即 f ( x ) = − f ( − x ) f(x)=-f(-x) f(x)=−f(−x),于是有 ∑ n = 1 ∞ a n x n = − ∑ n = 1 ∞ a n ( − x ) n = ∑ n = 1 ∞ ( − 1 ) n + 1 a n x n \displaystyle\sum\limits_{n=1}^\infty a_nx^n=-\displaystyle\sum\limits_{n=1}^\infty a_n(-x)^n=\displaystyle\sum\limits_{n=1}^\infty(-1)^{n+1}a_nx^n n=1∑∞anxn=−n=1∑∞an(−x)n=n=1∑∞(−1)n+1anxn,比较两端 x x x同次项系数,得 a n = ( − 1 ) n + 1 a n a_n=(-1)^{n+1}a_n an=(−1)n+1an。
当 n = 2 k n=2k n=2k为偶数时, a 2 k = − a 2 k a_{2k}=-a_{2k} a2k=−a2k,则 a 2 k = 0 , k = 0 , 1 , 2 , ⋯ a_{2k}=0,k=0,1,2,\cdots a2k=0,k=0,1,2,⋯;
当 n = 2 k − 1 n=2k-1 n=2k−1为奇数时, a 2 k − 1 = a 2 k − 1 , k = 1 , 2 , ⋯ a_{2k-1}=a_{2k-1},k=1,2,\cdots a2k−1=a2k−1,k=1,2,⋯。
综上可知, f ( x ) = ∑ k = 1 ∞ a 2 k − 1 x 2 k − 1 f(x)=\displaystyle\sum\limits_{k=1}^\infty a_{2k-1}x^{2k-1} f(x)=k=1∑∞a2k−1x2k−1,亦可写成 f ( x ) = ∑ n = 1 ∞ a 2 n − 1 x 2 n − 1 f(x)=\displaystyle\sum\limits_{n=1}^\infty a_{2n-1}x^{2n-1} f(x)=n=1∑∞a2n−1x2n−1。
解 f ( x ) = e x 2 ⋅ ∫ 0 x e − t 2 d t f(x)=e^{x^2}\cdot\displaystyle\int^x_0e^{-t^2}\mathrm{d}t f(x)=ex2⋅∫0xe−t2dt为奇函数,由 ( 1 ) (1) (1),设 f ( x ) = ∑ n = 1 ∞ a 2 n − 1 x 2 n − 1 f(x)=\displaystyle\sum\limits_{n=1}^\infty a_{2n-1}x^{2n-1} f(x)=n=1∑∞a2n−1x2n−1。
对求导 f ( x ) = ∫ 0 x e x 2 − t 2 d t f(x)=\displaystyle\int^x_0e^{x^2-t^2}\mathrm{d}t f(x)=∫0xex2−t2dt,得 f ′ ( x ) = 2 x f ( x ) + 1 f'(x)=2xf(x)+1 f′(x)=2xf(x)+1,即 ∑ n = 1 ∞ ( 2 n − 1 ) a 2 n − 1 x 2 n − 2 = ∑ n = 1 ∞ 2 a 2 n − 1 x 2 n + 1 \displaystyle\sum\limits_{n=1}^\infty(2n-1)a_{2n-1}x^{2n-2}=\displaystyle\sum\limits_{n=1}^\infty2a_{2n-1}x^{2n}+1 n=1∑∞(2n−1)a2n−1x2n−2=n=1∑∞2a2n−1x2n+1,也即 ∑ n = 1 ∞ ( 2 n + 1 ) a 2 n + 1 x 2 n + a 1 = ∑ n = 1 ∞ 2 a 2 n − 1 x 2 n + 1 \displaystyle\sum\limits_{n=1}^\infty(2n+1)a_{2n+1}x^{2n}+a_1=\displaystyle\sum\limits_{n=1}^\infty2a_{2n-1}x^{2n}+1 n=1∑∞(2n+1)a2n+1x2n+a1=n=1∑∞2a2n−1x2n+1。
比较两端同次项系数,得 a 1 = 1 a_1=1 a1=1,于是
a 2 n + 1 = 2 2 n + 1 a 2 n − 1 = 2 2 n + 1 ⋅ 2 2 n − 1 a 2 n − 3 = ⋯ = 2 2 n + 1 ⋅ 2 2 n − 1 ⋅ ⋯ ⋅ 2 3 ⋅ a 1 = 2 n ( 2 n + 1 ) ! ! . \begin{aligned} a_{2n+1}&=\cfrac{2}{2n+1}a_{2n-1}=\cfrac{2}{2n+1}\cdot\cfrac{2}{2n-1}a_{2n-3}=\cdots\\ &=\cfrac{2}{2n+1}\cdot\cfrac{2}{2n-1}\cdot\cdots\cdot\cfrac{2}{3}\cdot a_1=\cfrac{2^n}{(2n+1)!!}. \end{aligned} a2n+1=2n+12a2n−1=2n+12⋅2n−12a2n−3=⋯=2n+12⋅2n−12⋅⋯⋅32⋅a1=(2n+1)!!2n.
故 f ( x ) = x + ∑ n = 1 ∞ 2 n ( 2 n + 1 ) ! ! x 2 n + 1 , x ∈ ( − ∞ , + ∞ ) f(x)=x+\displaystyle\sum\limits_{n=1}^\infty\cfrac{2^n}{(2n+1)!!}x^{2n+1},x\in(-\infty,+\infty) f(x)=x+n=1∑∞(2n+1)!!2nx2n+1,x∈(−∞,+∞)。(这道题主要利用了微分方程求解)
解 令 S ( u ) = ∑ n = 1 ∞ 1 2 n − 1 u 2 n − 1 S(u)=\displaystyle\sum\limits_{n=1}^\infty\cfrac{1}{2n-1}u^{2n-1} S(u)=n=1∑∞2n−11u2n−1,于是当 ∣ u ∣ < 1 |u|<1 ∣u∣<1时,有 S ( u ) = S ( 0 ) + ∫ 0 u S ′ ( t ) d t = ∫ 0 u ( ∑ n = 1 ∞ 1 2 n − 1 t 2 n − 1 ) d t = ∫ 0 u ∑ n = 1 ∞ t 2 n − 2 d t = ∫ 0 u 1 1 − t 2 d t = 1 2 ln 1 + u 1 − u S(u)=S(0)+\displaystyle\int^u_0S'(t)\mathrm{d}t=\displaystyle\int^u_0\left(\displaystyle\sum\limits_{n=1}^\infty\cfrac{1}{2n-1}t^{2n-1}\right)\mathrm{d}t=\displaystyle\int^u_0\displaystyle\sum\limits_{n=1}^\infty t^{2n-2}\mathrm{d}t=\displaystyle\int^u_0\cfrac{1}{1-t^2}\mathrm{d}t=\cfrac{1}{2}\ln\cfrac{1+u}{1-u} S(u)=S(0)+∫0uS′(t)dt=∫0u(n=1∑∞2n−11t2n−1)dt=∫0un=1∑∞t2n−2dt=∫0u1−t21dt=21ln1−u1+u。代入 u = 2 x 3 − 3 x u=\cfrac{2}{x^3-3x} u=x3−3x2,故 ∑ n = 1 ∞ 1 2 n − 1 ( 2 x 3 − 3 x ) 2 n − 1 = 1 2 ln ( x + 2 ) ( x − 1 ) 2 ( x + 1 ) 2 ( x − 2 ) ( x > 2 ) \displaystyle\sum\limits_{n=1}^\infty\cfrac{1}{2n-1}\left(\cfrac{2}{x^3-3x}\right)^{2n-1}=\cfrac{1}{2}\ln\cfrac{(x+2)(x-1)^2}{(x+1)^2(x-2)}(x>2) n=1∑∞2n−11(x3−3x2)2n−1=21ln(x+1)2(x−2)(x+2)(x−1)2(x>2)。(这道题主要利用了幂级数展开求解)
解 记 a n = b n n ! a_n=\cfrac{b_n}{n!} an=n!bn,则 lim n → ∞ ∣ a n + 1 a n ∣ = lim n → ∞ ∣ b n + 1 ( n + 1 ) ! ⋅ n ! b n ∣ = lim n → ∞ ∣ 1 n + 1 ⋅ b n + 1 b n ∣ = 0 \lim\limits_{n\to\infty}\left|\cfrac{a_{n+1}}{a_n}\right|=\lim\limits_{n\to\infty}\left|\cfrac{b_{n+1}}{(n+1)!}\cdot\cfrac{n!}{b_n}\right|=\lim\limits_{n\to\infty}\left|\cfrac{1}{n+1}\cdot\cfrac{b_{n+1}}{b_n}\right|=0 n→∞lim∣∣∣∣∣anan+1∣∣∣∣∣=n→∞lim∣∣∣∣∣(n+1)!bn+1⋅bnn!∣∣∣∣∣=n→∞lim∣∣∣∣∣n+11⋅bnbn+1∣∣∣∣∣=0,故收敛区间为 ( − ∞ , + ∞ ) (-\infty,+\infty) (−∞,+∞)。又记 S ( x ) = ∑ n = 1 ∞ b n x n n ! S(x)=\displaystyle\sum\limits_{n=1}^\infty b_n\cfrac{x^n}{n!} S(x)=n=1∑∞bnn!xn,则
S ′ ( x ) = ∑ n = 1 ∞ b n x n − 1 ( n − 1 ) ! = b 1 + ∑ n = 2 ∞ [ b n − 1 + ( n − 1 ) b n − 2 ] x n − 1 ( n − 1 ) ! = ∑ n = 1 ∞ b n − 1 x n − 1 ( n − 1 ) ! + ∑ n = 2 ∞ b n − 2 x n − 2 ( n − 2 ) ! ⋅ x = ∑ n = 0 ∞ b n x n n ! + x ⋅ ∑ n = 0 ∞ b n x n n ! \begin{aligned} S'(x)&=\displaystyle\sum\limits_{n=1}^\infty b_n\cfrac{x^{n-1}}{(n-1)!}=b_1+\displaystyle\sum\limits_{n=2}^\infty[b_{n-1}+(n-1)b_{n-2}]\cfrac{x^{n-1}}{(n-1)!}\\ &=\displaystyle\sum\limits_{n=1}^\infty b_{n-1}\cfrac{x^{n-1}}{(n-1)!}+\displaystyle\sum\limits_{n=2}^\infty b_{n-2}\cfrac{x^{n-2}}{(n-2)!}\cdot x=\displaystyle\sum\limits_{n=0}^\infty b_n\cfrac{x^n}{n!}+x\cdot\displaystyle\sum\limits_{n=0}^\infty b_n\cfrac{x^n}{n!} \end{aligned} S′(x)=n=1∑∞bn(n−1)!xn−1=b1+n=2∑∞[bn−1+(n−1)bn−2](n−1)!xn−1=n=1∑∞bn−1(n−1)!xn−1+n=2∑∞bn−2(n−2)!xn−2⋅x=n=0∑∞bnn!xn+x⋅n=0∑∞bnn!xn
于是 S ′ ( x ) S ( x ) = 1 + x \cfrac{S'(x)}{S(x)}=1+x S(x)S′(x)=1+x,即 ∫ 1 S ( x ) d [ S ( x ) ] = ∫ ( 1 + x ) d x \displaystyle\int\cfrac{1}{S(x)}\mathrm{d}[S(x)]=\displaystyle\int(1+x)\mathrm{d}x ∫S(x)1d[S(x)]=∫(1+x)dx,得 ln ∣ S ( x ) ∣ = x + x 2 2 + ln C 1 \ln|S(x)|=x+\cfrac{x^2}{2}+\ln C_1 ln∣S(x)∣=x+2x2+lnC1,也即得 S ( x ) = ± C 1 e x + x 2 2 = C e x + x 2 2 S(x)=\pm C_1e^{x+\frac{x^2}{2}}=Ce^{x+\frac{x^2}{2}} S(x)=±C1ex+2x2=Cex+2x2,又 S ( 0 ) = 1 S(0)=1 S(0)=1,故 C = 1 C=1 C=1,于是 S ( x ) = e x + x 2 2 , x ∈ ( − ∞ , + ∞ ) S(x)=e^{x+\frac{x^2}{2}},x\in(-\infty,+\infty) S(x)=ex+2x2,x∈(−∞,+∞)。(这道题主要利用了微分方程求解)
如果觉得文章不错就点个赞吧。另外,如果有不同的观点,欢迎留言或私信。
欢迎非商业转载,转载请注明出处。