数据结构是指,相互之间存在着一种或多种关系的数据元素的集合和该集合中数据元素之间的关系组成。常用的数据结构有:数组、栈、队列、链表、树、散列表、堆、图。
(1)线性结构:
线性结构就是表中哥哥节点具体有线性关系,如果从数据结构的语言来描述,则线性结构:
(1.1)、线性结构是非空集
(1.2)、线性结构有且仅有一个开始点和一个终端节点
(1.3)、线性结构所有节点最多只有哦一个直接前趋节点和一个直接后继节点
数组(Array)、栈(Stack)、队列(Queue)、链表(Linked List)等数据的逻辑结构的属于线性表
(2)非线性结构:
非线性结构就是表中的各个节点之间具有多个对应关系。如果从数据结构语言来描述,有以下特点:
(2.1)、非线性结构是非空集。
(2.2)、非线性结构的一个结点可能有多个直接前趋结点和多个直接后继结点。
树( Tree)、散列表(Hash)、堆(Heap)、图(Graph)等数据的逻辑结构都属于非线性结构。
int [] arrs = new int[100]; arrs[0]=1;
优点:
1、按照索引查询元素速度快
2、按照索引遍历数组方便
缺点:
1、数组的大小固定后就无法扩容了
2、数组只能存储一种类型的数据
3、添加,删除的操作慢,因为要移动其他的元素。
适用场景:
频繁查询,对存储空间要求不大,很少增加和删除的情况。
栈参考案例:https://blog.csdn.net/weixin_43062845/article/details/100007546
队列参考案例:
https://blog.csdn.net/weixin_43062845/article/details/100135200
链表的优点:
链表是很常用的一种数据结构,不需要初始化容量,可以任意加减元素;
添加或者删除元素时只需要改变前后两个元素结点的指针域指向地址即可,所以添加,删除很快;
缺点:
因为含有大量的指针域,占用空间较大;
查找元素需要遍历链表来查找,非常耗时。
适用场景:
数据量较小,需要频繁增加,删除操作的场景
单链表参考案例:https://blog.csdn.net/weixin_43062845/article/details/100768147
循环链表参考:更新ing…
双向链表参考:更新ing…
在日常的应用中,我们讨论和用的更多的是树的其中一种结构,就是二叉树。
二叉树是树的特殊一种,具有如下特点:
1、每个结点最多有两颗子树,结点的度最大为2。
2、左子树和右子树是有顺序的,次序不能颠倒。
3、即使某结点只有一个子树,也要区分左右子树。
二叉树是一种比较有用的折中方案,它添加,删除元素都很快,并且在查找方面也有很多的算法优化,所以,二叉树既有链表的好处,也有数组的好处,是两者的优化方案,在处理大批量的动态数据方面非常有用。
扩展:
二叉树有很多扩展的数据结构,包括平衡二叉树、红黑树、B+树等,这些数据结构二叉树的基础上衍生了很多的功能,在实际应用中广泛用到,例如mysql的数据库索引结构用的就是B+树,还有HashMap的底层源码中用到了红黑树。这些二叉树的功能强大,但算法上比较复杂,还需要深入研究。
树代码实现参考:更新ing…
散列表,也叫哈希表,是根据关键码和值 (key和value) 直接进行访问的数据结构,通过key和value来映射到集合中的一个位置,这样就可以很快找到集合中的对应元素。
记录的存储位置=f(key)
这里的对应关系 f 成为散列函数,又称为哈希 (hash函数),而散列表就是把Key通过一个固定的算法函数既所谓的哈希函数转换成一个整型数字,然后就将该数字对数组长度进行取余,取余结果就当作数组的下标,将value存储在以该数字为下标的数组空间里,这种存储空间可以充分利用数组的查找优势来查找元素,所以查找的速度很快。
哈希表在应用中也是比较常见的,例如HashMap,HashTable等,利用hash表的优势,对于集合的查找元素时非常方便的,然而,因为哈希表是基于数组衍生的数据结构,在添加删除元素方面是比较慢的,所以很多时候需要用到一种数组链表来做,也就是拉链法。拉链法是数组结合链表的一种结构,较早前的hashMap底层的存储就是采用这种结构,直到jdk1.8之后才换成了数组加红黑树的结构,其示例图如下:
图左边是个数组,数组的每个成员包括一个指针,指向一个链表的头,当然这个链表可能为空,也可能元素很多。我们根据元素的一些特征把元素分配到不同的链表中去,也是根据这些特征,找到正确的链表,再从链表中找出这个元素。
哈希表的应用场景很多,当然也有很多问题要考虑,比如哈希冲突的问题,如果处理的不好会浪费大量的时间,导致应用崩溃。
散列表代码实现参考:更新ing…
根节点值最大的堆叫大顶堆或最大堆,根节点值最小的堆叫做最小堆或小顶堆。常见的堆有二叉堆、斐波那契堆等。
堆的定义如下:n个元素的序列{k1,k2,ki,…,kn}当且仅当满足下关系时,称之为堆。
满足(ki >= k2i,ki >= k2i+1):为大顶堆
满足:(ki <= k2i,ki <= k2i+1):为小丁堆
这两者的结构图可以用完全二叉树排列出来,示例图如下:
因为堆有序的特点,一般用来做数组中的排序,称为堆排序。
堆的代码实现参考:更新ing…
图是一种比较复杂的数据结构,在存储数据上有着比较复杂和高效的算法,分别有邻接矩阵 、邻接表、十字链表、邻接多重表、边集数组等存储结构,这里不做展开,读者有兴趣可以自己学习深入。
图的代码实现参考:更新ing…