Author: Sijin Yu
使用 tf2zpk()
函数可以获得频率响应的零极点.
matlab 的官方文档对 tf2zpk()
函数的用法介绍如下.
即, 给定系统函数
H ( z ) = b 0 + b 1 z − 1 + ⋯ + b n z − n a 0 + b 0 z − 1 + ⋯ + a n z − m = ∑ i = 0 n b i z − i ∑ i = 0 m a i z − i , H(z)=\frac{b_0+b_1z^{-1}+\cdots+b_nz^{-n}}{a_0+b_0z^{-1}+\cdots+a_nz^{-m}}=\frac{\sum^{n}_{i=0}b_iz^{-i}}{\sum^m_{i=0}a_iz^{-i}}, H(z)=a0+b0z−1+⋯+anz−mb0+b1z−1+⋯+bnz−n=∑i=0maiz−i∑i=0nbiz−i,
令序列 b = [ b 0 , b 1 , ⋯ , b n ] , a = [ a 0 , a 1 , ⋯ , a m ] b=[b_0,b_1,\cdots,b_n],a=[a_0,a_1,\cdots,a_m] b=[b0,b1,⋯,bn],a=[a0,a1,⋯,am]. 系统函数的零极点表达式为
H ( z ) = k ( z − z 1 ) ( z − z 2 ) ⋯ ( z − z N ) ( z − p 1 ) ( z − p 2 ) ⋯ ( z − p M ) = k ∏ i = 1 N ( z − z i ) ∏ i = 1 M ( z − p i ) , H(z)=k\frac{(z-z_1)(z-z_2)\cdots(z-z_N)}{(z-p_1)(z-p_2)\cdots(z-p_M)}=k\frac{\prod^N_{i=1}(z-z_i)}{\prod^M_{i=1}(z-p_i)}, H(z)=k(z−p1)(z−p2)⋯(z−pM)(z−z1)(z−z2)⋯(z−zN)=k∏i=1M(z−pi)∏i=1N(z−zi),
序列 z = [ z 1 , z 2 , ⋯ , z N ] , p = [ p 1 , p 2 , ⋯ , p M ] z=[z_1,z_2,\cdots,z_N],p=[p_1,p_2,\cdots,p_M] z=[z1,z2,⋯,zN],p=[p1,p2,⋯,pM] 分别表示 H ( z ) H(z) H(z) 的零点和极点. 函数 [z, p, k]=tf2zpk(b, a)
返回以 b
和 a
序列为参数的系统方程的零点序列 z
、极点序列 p
、增益 k
.
matlab 的官方文档对 zplane()
函数的用法介绍如下.
zplane()
有两个主要用法:
zplane(z, p)
. 传入参数为零点序列 z
和极点序列 p
. 直接作零极点图.zplane(b, a)
. 传入参数为系统函数的参数 b
和 a
. 函数自动根据系统函数作零极点图.\在下文我们会验证这两种做法是等效的.
matlab 的官方文档对 freqz()
函数的用法介绍如下.
即, 给定系统函数
H ( z ) = b 0 + b 1 z − 1 + ⋯ + b n z − n a 0 + b 0 z − 1 + ⋯ + a n z − m = ∑ i = 0 n b i z − i ∑ i = 0 m a i z − i , H(z)=\frac{b_0+b_1z^{-1}+\cdots+b_nz^{-n}}{a_0+b_0z^{-1}+\cdots+a_nz^{-m}}=\frac{\sum^{n}_{i=0}b_iz^{-i}}{\sum^m_{i=0}a_iz^{-i}}, H(z)=a0+b0z−1+⋯+anz−mb0+b1z−1+⋯+bnz−n=∑i=0maiz−i∑i=0nbiz−i,
令序列 b = [ b 0 , b 1 , ⋯ , b n ] , a = [ a 0 , a 1 , ⋯ , a m ] b=[b_0,b_1,\cdots,b_n],a=[a_0,a_1,\cdots,a_m] b=[b0,b1,⋯,bn],a=[a0,a1,⋯,am]. 函数 [h, w]=freqz(b, a)
返回频率响应序列 h
和频率序列 w
. h
为复序列, 模 abs(h)
为幅频响应序列, 角 angle(h)
为相频响应序列.
作下面系统函数的零极点图、幅频特性曲线、相频特性曲线.
H ( z ) = 0.5 z − 1 − 0.72 z − 3 3 + 2 z − 1 − 0.87 z − 2 . H(z)=\frac{0.5z^{-1}-0.72z^{-3}}{3+2z^{-1}-0.87z^{-2}}. H(z)=3+2z−1−0.87z−20.5z−1−0.72z−3.
代码如下:
% test.m
% author: Sijin Yu
clear;
figure(1);
b = [0 0.5 0 -0.72];
a = [3 2 0.87];
[z, p, k] = tf2zpk(b, a);
% -----零极点-----
subplot(2, 2, 1);
zplane(z, p);
title('zplane(z, p)');
subplot(2, 2, 2);
zplane(b, a);
title('zplane(b, a)');
% -----幅频特性-----
[h, w] = freqz(b, a);
H_abs = abs(h);
subplot(2, 2, 3);
plot(w, 20 * log10(H_abs)); % 以分贝为单位
title('幅频特性');
% -----相频特性-----
H_angle = angle(h);
subplot(2, 2, 4);
plot(w, H_angle);
title('相频特性');
该函数依赖 scipy
库, 使用前应执行 pip install scipy
.
scipy
的官方文档介绍如下.
其用法和 matlab 中的 tf2zpk()
用法非常相似, 不多赘述.
Python 中没有直接实现 matlab 中 zplane()
函数的功能. (至少我没找到, 有知道的大佬欢迎留言.) 因此我自己实现了 zplane()
函数.
函数定义的代码如下
import matplotlib.pyplot as plt
import numpy as np
from matplotlib.patches import Circle
def zplane(z, p, fig=None, ax=None):
if fig==None or ax==None:
fig, ax = plt.subplots(figsize=(4, 4))
circle = Circle(xy = (0.0, 0.0), radius = 1, alpha = 0.9, facecolor = 'white')
# 作单位园
theta = np.linspace(0, 2 * np.pi, 200)
x = np.cos(theta)
y = np.sin(theta)
ax.add_patch(circle)
ax.plot(x, y, color="darkred", linewidth=2)
lim = max(max(z), max(p), 1) + 1
# 控制坐标轴范围
plt.xlim([-lim, lim])
plt.ylim([-lim, lim])
# 作零极点
for i in z:
ax.plot(np.real(i),np.imag(i), 'bo')
for i in p:
ax.plot(np.real(i),np.imag(i), 'bx')
scipy
库官方文档对其描述如下.
(由于内容过长, 不截图)
scipy.signal.freqz(b, a=1, worN=512, whole=False, plot=None, fs=6.283185307179586, include_nyquist=False)
Parameters:
b
: array_like
b
has dimension greater than 1, it is assumed that the coefficients are stored in the first dimension, and b.shape[1:]
, a.shape[1:]
, and the shape of the frequencies array must be compatible for broadcasting.a
: array_like
b
has dimension greater than 1, it is assumed that the coefficients are stored in the first dimension, and b.shape[1:]
, a.shape[1:]
, and the shape of the frequencies array must be compatible for broadcasting.worN
: {None, int, array_like}, optional
np.linspace(0, fs if whole else fs/2, N, endpoint=include_nyquist)
.array_like
, compute the response at the frequencies given. These are in the same units as fs
.whole
: bool, optional
fs/2
(upper-half of unit-circle). If whole
is True, compute frequencies from 0 to fs
. Ignored if worN is array_like
.plot
: callable
callable
that takes two arguments. If given, the return parameters w
and h
are passed to plot. Useful for plotting the frequency response inside freqz
.fs
: float, optional
include_nyquist
: bool, optional
whole
is False and worN
is an integer, setting include_nyquist to True will include the last frequency (Nyquist frequency) and is otherwise ignored.Returns:
w
: ndarray
h
was computed, in the same units as fs
. By default, w
is normalized to the range [0, pi) (radians/sample).h
: ndarray
我们用回 1.4 中的例子.
代码如下:
# test.py
# author: Sijin Yu
import matplotlib.pyplot as plt
import numpy as np
from scipy import signal
from matplotlib.patches import Circle
def zplane(z, p, fig=None, ax=None):
if fig==None or ax==None:
fig, ax = plt.subplots(figsize=(4, 4))
circle = Circle(xy = (0.0, 0.0), radius = 1, alpha = 0.9, facecolor = 'white')
# 作单位园
theta = np.linspace(0, 2 * np.pi, 200)
x = np.cos(theta)
y = np.sin(theta)
ax.add_patch(circle)
ax.plot(x, y, color="darkred", linewidth=2)
lim = max(max(z), max(p), 1) + 1
# 控制坐标轴范围
plt.xlim([-lim, lim])
plt.ylim([-lim, lim])
# 作零极点
for i in z:
ax.plot(np.real(i),np.imag(i), 'bo')
for i in p:
ax.plot(np.real(i),np.imag(i), 'bx')
b = np.array([0, 0.5, 0, -0.72])
a = np.array([3, 2, 0.87])
# -----零极点图-----
z, p, k = signal.tf2zpk(b, a)
fig = plt.figure(figsize=(10, 10))
ax = fig.add_subplot(2, 2, 1)
zplane(z, p, fig=fig, ax=ax)
# -----幅频特性-----
w, h = signal.freqz(b, a)
ax = fig.add_subplot(2, 2, 3)
ax.plot(w, 20 * np.log10(abs(h))) # 以分贝为单位
# -----相频特性-----
ax = fig.add_subplot(2, 2, 4)
ax.plot(w, np.angle(h))
fig.savefig("result_py.jpg")
对比 matlab 的图和 Python 的图, 发现为原点的极点 Python 没有画出, 而 matlab 画出. 其余结果 matlab 与 Python 一致.