可视化|历届奥运会数据可视化

文章目录

    • 1 数据来源
    • 2 数据可视化
        • 2.1 数量可视化
          • 1. 男性运动员年龄分布直方图
          • 2. 女性运动员年龄分布直方图
          • 3. 全体运动员年龄分布直方图
          • 4. 男性运动员身高体重分布散点图
          • 5. 女性运动员身高体重分布散点图
          • 6. 全体运动员身高体重分布散点图
        • 2.2 地理可视化
          • 1. 历届奥运会各国运动员分布轮播地图
          • 2. 历届夏奥会各国运动员分布轮播地图
          • 3. 历届冬奥会各国运动员分布轮播地图
          • 4. 历届夏奥会主办城市地图
          • 5. 历届冬奥会主办城市地图
          • 6. 历届夏奥会主办城市轨迹地图
          • 7. 历届冬奥会主办城市轨迹地图
          • 8. 历届夏奥会主办城市轨迹3D地图
          • 9. 历届冬奥会主办城市轨迹3D地图
          • 10. 历届夏奥会获奖国家分布时间线地图
          • 11. 历届冬奥会获奖国家分布时间线地图
          • 12. 历届夏奥会参赛国家分布时间线地图
          • 13. 历届冬奥会参赛国家分布时间线地图
        • 2.3 趋势可视化
          • 1. 男性|女性|全体历届奥运会中国参赛人数折线图
          • 2. 男性|女性|全体历届奥运会中国参赛人数柱状折线图
          • 3. 历届夏奥会参赛国家数量时间线折线图
          • 4. 历届冬奥会参赛国家数量时间线折线图
          • 5. 历届夏奥会获奖国家数量时间线折线图
          • 6. 历届冬奥会获奖国家数量时间线折线图
          • 7. 历届夏奥会或冬奥会参赛|获奖国家数量时间线折线图
        • 2.4 比例可视化
          • 1. 历届夏奥会参赛国家获奖比例堆叠柱状折线图
          • 2. 历届冬奥会参赛国家获奖比例堆叠柱状折线图

1 数据来源

  Kaggle奥运会数据集,包括从1896年雅典奥运会到2016年里约热内卢的所有奥运赛事和运动员数据,可用于历届奥运会数据可视化。

链接:https://www.kaggle.com/heesoo37/120-years-of-olympic-history-athletes-and-results

可视化|历届奥运会数据可视化_第1张图片

2 数据可视化

2.1 数量可视化

1. 男性运动员年龄分布直方图
#[可视化]男性运动员年龄分布
import pandas as pd
from pyecharts import options as opts
from pyecharts.charts import Bar
from pyecharts.commons.utils import JsCode

# 将数据存储到列表中
athlete_df=pd.read_csv("./DataSet/History/athlete_events.csv")
df=athlete_df.groupby(['Sex','Age'])['ID'].count().reset_index()
m_age=df[df['Sex']=='M']['Age'].values.tolist()
m_age_num=df[df['Sex']=='M']['ID'].values.tolist()

c = (
    Bar()
    .add_xaxis(m_age)
    .add_yaxis("", m_age_num, category_gap=0)
    .set_series_opts(
        itemstyle_opts={
            "normal": {
                "color": JsCode(
                    """new echarts.graphic.LinearGradient(0, 0, 0, 1, [{
                offset: 0,
                color: 'rgba(0, 244, 255, 1)'
            }, {
                offset: 1,
                color: 'rgba(0, 77, 167, 1)'
            }], false)"""
                ),
                "shadowColor": "rgb(0, 160, 221)",
            }
        },
        label_opts=opts.LabelOpts(is_show=False),
        markline_opts=opts.MarkLineOpts()
    )
    .set_global_opts(
        title_opts=opts.TitleOpts(title="男性运动员年龄分布",pos_left='center'),
        yaxis_opts=opts.AxisOpts(name='数量/个'),
        xaxis_opts=opts.AxisOpts(name='年龄/岁')
    )
    .render("./Visual/[直方图]男性运动员年龄分布.html")
)

可视化|历届奥运会数据可视化_第2张图片

2. 女性运动员年龄分布直方图
#[可视化]女性运动员年龄分布
from pyecharts import options as opts
from pyecharts.charts import Bar
from pyecharts.commons.utils import JsCode
from pyecharts.faker import Faker

# 将数据存储到列表中
athlete_df=pd.read_csv("./DataSet/History/athlete_events.csv")
df=athlete_df.groupby(['Sex','Age'])['ID'].count().reset_index()
w_age=df[df['Sex']=='F']['Age'].values.tolist()
w_age_num=df[df['Sex']=='F']['ID'].values.tolist()

c = (
    Bar()
    .add_xaxis(w_age)
    .add_yaxis("", w_age_num, category_gap=0)
    .set_series_opts(
        itemstyle_opts={
            "normal": {
                "color": JsCode(
                    """new echarts.graphic.LinearGradient(0, 0, 0, 1, [{
                offset: 0,
                color: 'rgba(0, 244, 255, 1)'
            }, {
                offset: 1,
                color: 'rgba(0, 77, 167, 1)'
            }], false)"""
                ),
                "shadowColor": "rgb(0, 160, 221)",
            }
        },
        label_opts=opts.LabelOpts(is_show=False),
        markline_opts=opts.MarkLineOpts()
    )
    .set_global_opts(
        title_opts=opts.TitleOpts(title="女性运动员年龄分布",pos_left='center'),
        yaxis_opts=opts.AxisOpts(name='数量/个'),
        xaxis_opts=opts.AxisOpts(name='年龄/岁')
    )
    .render("./Visual/[直方图]女性运动员年龄分布.html")
)

可视化|历届奥运会数据可视化_第3张图片

3. 全体运动员年龄分布直方图
#[可视化]全体运动员年龄分布
from pyecharts import options as opts
from pyecharts.charts import Bar
from pyecharts.commons.utils import JsCode
from pyecharts.faker import Faker

# 将数据存储到列表中
athlete_df=pd.read_csv("./DataSet/History/athlete_events.csv")
df=athlete_df.groupby(['Age'])['ID'].count().reset_index()
age=df['Age'].values.tolist()
age_num=df['ID'].values.tolist()

c = (
    Bar()
    .add_xaxis(age)
    .add_yaxis("", age_num, category_gap=0)
    .set_series_opts(
        itemstyle_opts={
            "normal": {
                "color": JsCode(
                    """new echarts.graphic.LinearGradient(0, 0, 0, 1, [{
                offset: 0,
                color: 'rgba(0, 244, 255, 1)'
            }, {
                offset: 1,
                color: 'rgba(0, 77, 167, 1)'
            }], false)"""
                ),
                "shadowColor": "rgb(0, 160, 221)",
            }
        },
        label_opts=opts.LabelOpts(is_show=False),
        markline_opts=opts.MarkLineOpts()
    )
    .set_global_opts(
        title_opts=opts.TitleOpts(title="运动员年龄分布",pos_left='center'),
        yaxis_opts=opts.AxisOpts(name='数量/个'),
        xaxis_opts=opts.AxisOpts(name='年龄/岁')
    )
    .render("./Visual/[直方图]运动员年龄分布.html")
)

可视化|历届奥运会数据可视化_第4张图片

4. 男性运动员身高体重分布散点图
#[可视化]男性运动员身高体重
import pandas as pd
from pyecharts import options as opts
from pyecharts.charts import Scatter

# 将数据存储到列表中
athlete_df=pd.read_csv("./DataSet/History/athlete_events.csv")
athlete_df=athlete_df[athlete_df['Sex']=='M']
df=athlete_df[['Height','Weight']].drop_duplicates().dropna()
df=df.sort_values(by=['Weight'])
height=df['Height'].values.tolist()
weight=df['Weight'].values.tolist()

c = (
    Scatter()
    .add_xaxis(weight)
    .add_yaxis("", height,symbol_size=7)
    .set_series_opts(
        label_opts=opts.LabelOpts(is_show=False)
    )
    .set_global_opts(
        title_opts=opts.TitleOpts(title="男性运动员身高体重分布",pos_left='center'),
        xaxis_opts=opts.AxisOpts(min_=35,max_=60,name='Weight'),
        yaxis_opts=opts.AxisOpts(max_=220,min_=100,name='Height')
    )
    .render("./Visual/[散点图]男性运动员身高体重.html")
)

可视化|历届奥运会数据可视化_第5张图片

5. 女性运动员身高体重分布散点图
#[可视化]女性运动员身高体重
import pandas as pd
from pyecharts import options as opts
from pyecharts.charts import Scatter

# 将数据存储到列表中
athlete_df=pd.read_csv("./DataSet/History/athlete_events.csv")
athlete_df=athlete_df[athlete_df['Sex']=='F']
df=athlete_df[['Height','Weight']].drop_duplicates().dropna()
df=df.sort_values(by=['Weight'])
height=df['Height'].values.tolist()
weight=df['Weight'].values.tolist()

c = (
    Scatter()
    .add_xaxis(weight)
    .add_yaxis("", height,symbol_size=7)
    .set_series_opts(
        label_opts=opts.LabelOpts(is_show=False)
    )
    .set_global_opts(
        title_opts=opts.TitleOpts(title="女性运动员身高体重分布",pos_left='center'),
        xaxis_opts=opts.AxisOpts(max_=50, min_=30, name='Weight'),
        yaxis_opts=opts.AxisOpts(max_=220,min_=100,name='Height')
    )
    .render("./Visual/[散点图]女性运动员身高体重.html")
)

可视化|历届奥运会数据可视化_第6张图片

6. 全体运动员身高体重分布散点图
#[可视化]全体运动员身高体重
import pandas as pd
from pyecharts import options as opts
from pyecharts.charts import Scatter

# 将数据存储到列表中
athlete_df=pd.read_csv("./DataSet/History/athlete_events.csv")
df=athlete_df[['Height','Weight']].drop_duplicates().dropna()
df=df.sort_values(by=['Weight'])
height=df['Height'].values.tolist()
weight=df['Weight'].values.tolist()

c = (
    Scatter()
    .add_xaxis(weight)
    .add_yaxis("", height,symbol_size=7)
    .set_series_opts(
        label_opts=opts.LabelOpts(is_show=False)
    )
    .set_global_opts(
        title_opts=opts.TitleOpts(title="全体运动员身高体重分布",pos_left='center'),
        xaxis_opts=opts.AxisOpts(max_=80, min_=28, name='Weight'),
        yaxis_opts=opts.AxisOpts(max_=220,min_=100,name='Height')
    )
    .render("./Visual/[散点图]全体运动员身高体重.html")
)

可视化|历届奥运会数据可视化_第7张图片

2.2 地理可视化

1. 历届奥运会各国运动员分布轮播地图

  利用Pandas将历届运动员数据按照年份和国家聚类:
在这里插入图片描述
  以1896年为例,筛选1896年的各国家参赛运动员数据:
可视化|历届奥运会数据可视化_第8张图片
  利用Pandas统计奥运会举办年份数量:
可视化|历届奥运会数据可视化_第9张图片
  利用Timeline和Map图表进行可视化:

#[可视化]历届奥运会各国运动员分布自动轮播地图
from pyecharts import options as opts
from pyecharts.charts import Map,Timeline

# 统计年份数量
athlete_df=pd.read_csv("./DataSet/History/athlete_events.csv")
data=athlete_df.groupby(by=['Year','Team'])['ID'].count().reset_index()
count=len(athlete_df['Year'].unique())
years=athlete_df['Year'].sort_values().unique().tolist()
timeline =(
    Timeline()
    .add_schema(
        is_auto_play=True, 
        is_loop_play=True,
        is_timeline_show=True, 
        play_interval=500
    )
) 
for i in range(count):
    year=years[i]
    data_list=data[data['Year']==year][['Team','ID']].values.tolist()
    map=(
        Map()
        .add("", data_list, "world",
         is_map_symbol_show=False,
         )
        .set_series_opts(label_opts=opts.LabelOpts(is_show=False))
        .set_global_opts(
            title_opts=opts.TitleOpts(title="历届奥运会各国运动员分布图————{}年".format(years[i])),
            visualmap_opts=opts.VisualMapOpts(max_=500,range_color=['#feeeed','#d71345'])
    )
    )
timeline.add(map,'{}'.format(years[i]))

timeline.render("./Visual/[时间线地图]各国运动员分布图.html")

可视化|历届奥运会数据可视化_第10张图片
可视化|历届奥运会数据可视化_第11张图片
可视化|历届奥运会数据可视化_第12张图片

2. 历届夏奥会各国运动员分布轮播地图

  利用Pandas筛选季节为Summer的数据:
可视化|历届奥运会数据可视化_第13张图片

#[可视化]历届夏奥会各国运动员分布自动轮播地图
from pyecharts import options as opts
from pyecharts.charts import Map,Timeline

# 统计年份数量
athlete_df=pd.read_csv("./DataSet/History/athlete_events.csv")
athlete_df=athlete_df[athlete_df['Season']=='Summer']
data=athlete_df.groupby(by=['Year','Team'])['ID'].count().reset_index()
count=len(athlete_df['Year'].unique())
years=athlete_df['Year'].sort_values().unique().tolist()

timeline =(
    Timeline()
    .add_schema(
        is_auto_play=True, 
        is_loop_play=True,
        is_timeline_show=True, 
        play_interval=500,
        checkpointstyle_opts=opts.TimelineCheckPointerStyle(color='#ef4136',border_color='#ffce7b')
    )
) 
for i in range(count):
    year=years[i]
    data_list=data[data['Year']==year][['Team','ID']].values.tolist()
    map=(
        Map()
        .add("", data_list, "world",
         is_map_symbol_show=False,
         )
        .set_series_opts(label_opts=opts.LabelOpts(is_show=False))
        .set_global_opts(
            title_opts=opts.TitleOpts(title="历届夏奥会各国运动员分布图————{}年".format(years[i])),
            visualmap_opts=opts.VisualMapOpts(max_=500,range_color=['#ffce7b','#ef4136'])
    )
    )
    timeline.add(map,'{}'.format(years[i]))
timeline.render("./Visual/[时间线地图]夏奥会各国运动员分布图.html")

可视化|历届奥运会数据可视化_第14张图片
可视化|历届奥运会数据可视化_第15张图片

3. 历届冬奥会各国运动员分布轮播地图
#[可视化]历届冬奥会各国运动员分布自动轮播地图
from pyecharts import options as opts
from pyecharts.charts import Map,Timeline
import pandas as pd

# 统计年份数量
athlete_df=pd.read_csv("./DataSet/History/athlete_events.csv")
athlete_df=athlete_df[athlete_df['Season']=='Winter']
data=athlete_df.groupby(by=['Year','Team'])['ID'].count().reset_index()
count=len(athlete_df['Year'].unique())
years=athlete_df['Year'].sort_values().unique().tolist()

timeline =(
    Timeline()
    .add_schema(
        is_auto_play=True, 
        is_loop_play=True,
        is_timeline_show=True, 
        play_interval=500,
        checkpointstyle_opts=opts.TimelineCheckPointerStyle(color='#6950a1',border_color='#9b95c9')
    )
) 
for i in range(count):
    year=years[i]
    data_list=data[data['Year']==year][['Team','ID']].values.tolist()
    map=(
        Map()
        .add("", data_list, "world",
         is_map_symbol_show=False,
         )
        .set_series_opts(label_opts=opts.LabelOpts(is_show=False))
        .set_global_opts(
            title_opts=opts.TitleOpts(title="历届冬奥会各国运动员分布图————{}年".format(years[i])),
            visualmap_opts=opts.VisualMapOpts(max_=500,range_color=['#afb4db','#6f599c'])
    )
    )
    timeline.add(map,'{}'.format(years[i]))
timeline.render("./Visual/[时间线地图]冬奥会各国运动员分布图.html")

可视化|历届奥运会数据可视化_第16张图片
可视化|历届奥运会数据可视化_第17张图片

4. 历届夏奥会主办城市地图

  利用Pandas获取历届夏奥会主办城市:
可视化|历届奥运会数据可视化_第18张图片
  收集各个主办城市的经纬度:
可视化|历届奥运会数据可视化_第19张图片
  将城市经纬度数据转换为json格式并写入文件:
可视化|历届奥运会数据可视化_第20张图片

#[可视化]历届夏奥会主办城市地图
from pyecharts import options as opts
from pyecharts.charts import Geo
from pyecharts.globals import ChartType, SymbolType

athlete_df=pd.read_csv("./DataSet/History/athlete_events.csv")
athlete_df=athlete_df[athlete_df['Season']=='Summer']
city_df=athlete_df[['Year','City']].drop_duplicates().sort_values(by=['Year'])
# 获取城市
cities=city_df[['City','Year']].values.tolist()
locs=[]
for city in cities:
    locs.append(tuple(city))
# print(locs)
c = (
    Geo()
    .add_schema(
        maptype="world",
        # itemstyle_opts=opts.ItemStyleOpts(color="#323c48", border_color="#111"),
    )
    .add_coordinate_json("./DataSet/Location/Summer_City.json")
    .add(
        "",
        locs,
        type_=ChartType.EFFECT_SCATTER,
        color="red",
    )
    .set_series_opts(label_opts=opts.LabelOpts(is_show=False))
    .set_global_opts(
        title_opts=opts.TitleOpts(title='历届夏奥会主办城市地图',pos_left='center')
    )
    .render("./Visual/[地理坐标图]历届夏奥会主办城市地图.html")
)

可视化|历届奥运会数据可视化_第21张图片

5. 历届冬奥会主办城市地图
#[可视化]历届冬奥会主办城市地图
from pyecharts import options as opts
from pyecharts.charts import Geo
from pyecharts.globals import ChartType, SymbolType

athlete_df=pd.read_csv("./DataSet/History/athlete_events.csv")
athlete_df=athlete_df[athlete_df['Season']=='Winter']
city_df=athlete_df[['Year','City']].drop_duplicates().sort_values(by=['Year'])

# 获取城市
cities=city_df[['City','Year']].values.tolist()
locs=[]
for city in cities:
    locs.append(tuple(city))
# print(locs)

c = (
    Geo()
    .add_schema(
        maptype="world",
        # itemstyle_opts=opts.ItemStyleOpts(color="#323c48", border_color="#111"),
    )
    .add_coordinate_json("./DataSet/Location/Winter_City.json")
    .add(
        "",
        locs,
        type_=ChartType.EFFECT_SCATTER,
        color="#4e72b8",
    )
    .set_series_opts(label_opts=opts.LabelOpts(is_show=False))
    .set_global_opts(
        title_opts=opts.TitleOpts(title='历届冬奥会主办城市地图',pos_left='center')
    )
    .render("./Visual/[地理坐标图]历届冬奥会主办城市地图.html")
)

可视化|历届奥运会数据可视化_第22张图片

6. 历届夏奥会主办城市轨迹地图
#[可视化]历届夏奥会主办城市轨迹地图
from pyecharts import options as opts
from pyecharts.charts import Geo
from pyecharts.globals import ChartType, SymbolType

athlete_df=pd.read_csv("./DataSet/History/athlete_events.csv")
athlete_df=athlete_df[athlete_df['Season']=='Summer']
city_df=athlete_df[['Year','City']].drop_duplicates().sort_values(by=['Year'])

# 获取城市
cities=city_df[['City','Year']].values.tolist()
locs=[]
for city in cities:
    locs.append(tuple(city))
# print(locs)
# 获取轨迹
city_list=list(city_df['City'])
lines=[]
for i in range(len(city_list)-1):
    lines.append(tuple([city_list[i],city_list[i+1]]))
# print(lines)

c = (
    Geo()
    .add_schema(
        maptype="world",
        itemstyle_opts=opts.ItemStyleOpts(color="#323c48", border_color="#111"),
    )
    .add_coordinate_json("./DataSet/Location/Summer_City.json")
    .add(
        "",
        locs,
        type_=ChartType.EFFECT_SCATTER,
        color="white",
    )
    .add(
        "",
        lines,
        type_=ChartType.LINES,
        effect_opts=opts.EffectOpts(
            symbol=SymbolType.ARROW, symbol_size=6, color="blue"
        ),
        linestyle_opts=opts.LineStyleOpts(curve=0.2),
    )
    .set_series_opts(label_opts=opts.LabelOpts(is_show=False))
    .set_global_opts(
        title_opts=opts.TitleOpts(title='历届夏奥会主办城市轨迹地图',pos_left='center')
    )
    .render("./Visual/[地理坐标图]历届夏奥会主办城市轨迹地图.html")
)

可视化|历届奥运会数据可视化_第23张图片

7. 历届冬奥会主办城市轨迹地图
#[可视化]历届冬奥会主办城市轨迹地图
from pyecharts import options as opts
from pyecharts.charts import Geo
from pyecharts.globals import ChartType, SymbolType

athlete_df=pd.read_csv("./DataSet/History/athlete_events.csv")
athlete_df=athlete_df[athlete_df['Season']=='Winter']
city_df=athlete_df[['Year','City']].drop_duplicates().sort_values(by=['Year'])

# 获取城市
cities=city_df[['City','Year']].values.tolist()
locs=[]
for city in cities:
    locs.append(tuple(city))
# print(locs)
# 获取轨迹
city_list=list(city_df['City'])
lines=[]
for i in range(len(city_list)-1):
    lines.append(tuple([city_list[i],city_list[i+1]]))
# print(lines)

c = (
    Geo()
    .add_schema(
        maptype="world",
        itemstyle_opts=opts.ItemStyleOpts(color="#323c48", border_color="#111"),
    )
    .add_coordinate_json("./DataSet/Location/Winter_City.json")
    .add(
        "",
        locs,
        type_=ChartType.EFFECT_SCATTER,
        color="white",
    )
    .add(
        "",
        lines,
        type_=ChartType.LINES,
        effect_opts=opts.EffectOpts(
            symbol=SymbolType.ARROW, symbol_size=6, color="yellow"
        ),
        linestyle_opts=opts.LineStyleOpts(curve=0.2),
    )
    .set_series_opts(label_opts=opts.LabelOpts(is_show=False))
    .set_global_opts(
        title_opts=opts.TitleOpts(title='历届冬奥会主办城市轨迹地图',pos_left='center')
    )
    .render("./Visual/[地理坐标图]历届冬奥会主办城市轨迹地图.html")
)

可视化|历届奥运会数据可视化_第24张图片

8. 历届夏奥会主办城市轨迹3D地图
#[可视化]历届夏奥会主办城市轨迹3D地图
from pyecharts import options as opts
from pyecharts.charts import Map3D
from pyecharts.globals import ChartType
import pandas as pd

summer_city=pd.read_csv("./DataSet/Location/Summer_City.csv",header=None)
cities_location=summer_city[[1,2]].values.tolist()
data=[]
for i in range(len(cities_location)-1):
    data.append([cities_location[i],cities_location[i+1]])
    
c = (
    Map3D(init_opts=opts.InitOpts(width='1000px',height='700px'))
    .add_schema(
        maptype="world",
        box_depth=70,
        itemstyle_opts=opts.ItemStyleOpts(
            color="rgb(5,101,123)",
            opacity=1,
            border_width=0.8,
            border_color="rgb(62,215,213)",
        ),
        light_opts=opts.Map3DLightOpts(
            main_color="#fff",
            main_intensity=1.2,
            is_main_shadow=False,
            main_alpha=55,
            main_beta=10,
            ambient_intensity=0.3,
        ),
        post_effect_opts=opts.Map3DPostEffectOpts(is_enable=True),
    )
    .add(
        series_name="",
        data_pair=data,
        type_=ChartType.LINES3D,
        effect=opts.Lines3DEffectOpts(
            is_show=True,
            period=4,
            trail_width=3,
            trail_length=0.5,
            trail_color="#f00",
            trail_opacity=1,
        ),
        linestyle_opts=opts.LineStyleOpts(is_show=False, color="#fff", opacity=0),
    )
    .set_global_opts(title_opts=opts.TitleOpts(title="历届夏奥会主办城市轨迹3D地图"))
    .render("./Visual/[地理坐标图]历届夏奥会主办城市轨迹3D地图.html")
)

可视化|历届奥运会数据可视化_第25张图片

9. 历届冬奥会主办城市轨迹3D地图
#[可视化]历届冬奥会主办城市轨迹3D地图
from pyecharts import options as opts
from pyecharts.charts import Map3D
from pyecharts.globals import ChartType
import pandas as pd

winter_city=pd.read_csv("./DataSet/Location/Winter_city.csv",header=None)
cities_location=winter_city[[1,2]].values.tolist()
data=[]
for i in range(len(cities_location)-1):
    data.append([cities_location[i],cities_location[i+1]])
    
c = (
    Map3D(init_opts=opts.InitOpts(width='1000px',height='700px'))
    .add_schema(
        maptype="world",
        box_depth=70,
        itemstyle_opts=opts.ItemStyleOpts(
            color="rgb(5,101,123)",
            opacity=1,
            border_width=0.8,
            border_color="rgb(62,215,213)",
        ),
        light_opts=opts.Map3DLightOpts(
            main_color="#fff",
            main_intensity=1.2,
            is_main_shadow=False,
            main_alpha=55,
            main_beta=10,
            ambient_intensity=0.3,
        ),
        post_effect_opts=opts.Map3DPostEffectOpts(is_enable=True),
    )
    .add(
        series_name="",
        data_pair=data,
        type_=ChartType.LINES3D,
        effect=opts.Lines3DEffectOpts(
            is_show=True,
            period=4,
            trail_width=3,
            trail_length=0.5,
            trail_color="#f00",
            trail_opacity=1,
        ),
        linestyle_opts=opts.LineStyleOpts(is_show=False, color="#fff", opacity=0),
    )
    .set_global_opts(title_opts=opts.TitleOpts(title="历届冬奥会主办城市轨迹3D地图"))
    .render("./Visual/[地理坐标图]历届冬奥会主办城市轨迹3D地图.html")
)

可视化|历届奥运会数据可视化_第26张图片

10. 历届夏奥会获奖国家分布时间线地图
#[可视化]历届夏奥会获奖国家分布自动轮播地图
from pyecharts import options as opts
from pyecharts.charts import Map,Timeline

# 统计年份数量
athlete_df=pd.read_csv("./DataSet/History/athlete_events.csv")
count_df=athletes_df[athletes_df['Season']=='Summer'].groupby(['Year','Team'])['Medal'].count().reset_index()
count_df['value']=1
count=len(count_df['Year'].unique())
years=count_df['Year'].sort_values().unique().tolist()
timeline =(
    Timeline()
    .add_schema(
        is_auto_play=True, 
        is_loop_play=True,
        is_timeline_show=True, 
        play_interval=500,
        checkpointstyle_opts=opts.TimelineCheckPointerStyle(color='#6950a1',border_color='#9b95c9')
    )
) 
for i in range(count):
    year=years[i]
    data_list=count_df.loc[(count_df['Year']==year)&(count_df['Medal']!=0),['Team','value']].values.tolist()
    map=(
        Map()
        .add("", data_list, "world",
         is_map_symbol_show=False,
         )
        .set_series_opts(label_opts=opts.LabelOpts(is_show=False))
        .set_global_opts(
            title_opts=opts.TitleOpts(title="历届夏奥会获奖国家分布图————{}年".format(years[i])),
            visualmap_opts=opts.VisualMapOpts(is_show=False,range_color=['#9b95c9','#6f599c'])
    )
    )
    timeline.add(map,'{}'.format(years[i]))
timeline.render("./Visual/[时间线地图]历届夏奥会获奖国家分布图.html")

可视化|历届奥运会数据可视化_第27张图片

11. 历届冬奥会获奖国家分布时间线地图
#[可视化]历届冬奥会获奖国家分布自动轮播地图
from pyecharts import options as opts
from pyecharts.charts import Map,Timeline

# 统计年份数量
athlete_df=pd.read_csv("./DataSet/History/athlete_events.csv")
count_df=athletes_df[athletes_df['Season']=='Winter'].groupby(['Year','Team'])['Medal'].count().reset_index()
count_df['value']=1
count=len(count_df['Year'].unique())
years=count_df['Year'].sort_values().unique().tolist()

timeline =(
    Timeline()
    .add_schema(
        is_auto_play=True, 
        is_loop_play=True,
        is_timeline_show=True, 
        play_interval=500,
        checkpointstyle_opts=opts.TimelineCheckPointerStyle(color='#4e72b8',border_color='#90d7ec')
    )
) 
for i in range(count):
    year=years[i]
    data_list=count_df.loc[(count_df['Year']==year)&(count_df['Medal']!=0),['Team','value']].values.tolist()
    map=(
        Map()
        .add("", data_list, "world",
         is_map_symbol_show=False,
         )
        .set_series_opts(label_opts=opts.LabelOpts(is_show=False))
        .set_global_opts(
            title_opts=opts.TitleOpts(title="历届冬奥会获奖国家分布图————{}年".format(years[i])),
            visualmap_opts=opts.VisualMapOpts(is_show=False)
    )
    )
    timeline.add(map,'{}'.format(years[i]))
timeline.render("./Visual/[时间线地图]历届冬奥会获奖国家分布图.html")

可视化|历届奥运会数据可视化_第28张图片

12. 历届夏奥会参赛国家分布时间线地图
#[可视化]历届夏奥会参赛国家分布自动轮播地图
from pyecharts import options as opts
from pyecharts.charts import Map,Timeline

# 统计年份数量
athlete_df=pd.read_csv("./DataSet/History/athlete_events.csv")
count_df=athletes_df[athletes_df['Season']=='Summer'].groupby(['Year','Team'])['Medal'].count().reset_index()
count_df['value']=1
count=len(count_df['Year'].unique())
years=count_df['Year'].sort_values().unique().tolist()
timeline =(
    Timeline()
    .add_schema(
        is_auto_play=True, 
        is_loop_play=True,
        is_timeline_show=True, 
        play_interval=500,
        checkpointstyle_opts=opts.TimelineCheckPointerStyle(color='#fcaf17',border_color='#ffce7b')
    )
) 
for i in range(count):
    year=years[i]
    data_list=count_df.loc[count_df['Year']==year,['Team','value']].values.tolist()
    map=(
        Map()
        .add("", data_list, "world",
         is_map_symbol_show=False,
         )
        .set_series_opts(label_opts=opts.LabelOpts(is_show=False))
        .set_global_opts(
            title_opts=opts.TitleOpts(title="历届夏奥会参赛国家分布图————{}年".format(years[i])),
            visualmap_opts=opts.VisualMapOpts(is_show=False,range_color=['#fdb933','#6f599c'])
    )
    )
    timeline.add(map,'{}'.format(years[i]))
timeline.render("./Visual/[时间线地图]历届夏奥会参赛国家分布图.html")

可视化|历届奥运会数据可视化_第29张图片

13. 历届冬奥会参赛国家分布时间线地图
#[可视化]历届冬奥会参赛国家分布自动轮播地图
from pyecharts import options as opts
from pyecharts.charts import Map,Timeline

# 统计年份数量
athlete_df=pd.read_csv("./DataSet/History/athlete_events.csv")
count_df=athletes_df[athletes_df['Season']=='Winter'].groupby(['Year','Team'])['Medal'].count().reset_index()
count_df['value']=1
count=len(count_df['Year'].unique())
years=count_df['Year'].sort_values().unique().tolist()

timeline =(
    Timeline()
    .add_schema(
        is_auto_play=True, 
        is_loop_play=True,
        is_timeline_show=True, 
        play_interval=500,
        checkpointstyle_opts=opts.TimelineCheckPointerStyle(color='#00ae9d',border_color='#afdfe4')
    )
) 
for i in range(count):
    year=years[i]
    data_list=count_df.loc[count_df['Year']==year,['Team','value']].values.tolist()
    map=(
        Map()
        .add("", data_list, "world",
         is_map_symbol_show=False,
         )
        .set_series_opts(label_opts=opts.LabelOpts(is_show=False))
        .set_global_opts(
            title_opts=opts.TitleOpts(title="历届冬奥会参赛国家分布图————{}年".format(years[i])),
            visualmap_opts=opts.VisualMapOpts(is_show=False,range_color=['#00ae9d','#6f599c'])
    )
    )
    timeline.add(map,'{}'.format(years[i]))
timeline.render("./Visual/[时间线地图]历届冬奥会参赛国家分布图.html")

可视化|历届奥运会数据可视化_第30张图片

2.3 趋势可视化

1. 男性|女性|全体历届奥运会中国参赛人数折线图

  利用Pandas得到中国历届奥运会男性|女性|全体参赛人数:
可视化|历届奥运会数据可视化_第31张图片
可视化|历届奥运会数据可视化_第32张图片
可视化|历届奥运会数据可视化_第33张图片
  观察发现,在1932年和1952年没有女性运动员,因此对数据进行补充:
可视化|历届奥运会数据可视化_第34张图片

#[可视化]男性|女性|全体历届奥运会中国参赛人数折线图
import pandas as pd
from pyecharts.charts import Line,Timeline
import pyecharts.options as opts
from pyecharts.globals import ThemeType,JsCode

athlete_df=pd.read_csv("./DataSet/History/athlete_events.csv")
china_df=athlete_df[athlete_df['Team']=='China']
# 全体
all_df=china_df.groupby(by=['Year'])['ID'].count().reset_index()
all=china_df.groupby(by=['Year'])['ID'].count().reset_index().values.tolist()
# 男性
male_df=china_df[china_df['Sex']=='M']
male=male_df.groupby(by=['Year'])['ID'].count().reset_index().values.tolist()
# 女性
female_df=china_df[china_df['Sex']=='F']
female=female_df.groupby(by=['Year'])['ID'].count().reset_index()
# 在1932年和1952年没有女性运动员
lost=pd.DataFrame({'Year':[1932,1952],'ID':[0,0]})
female=female.append(lost,ignore_index=True).sort_values(by=['Year']).values.tolist()

# 背景色
background_color_js = (
    "new echarts.graphic.LinearGradient(0, 0, 0, 1, "
    "[{offset: 0, color: '#c86589'}, {offset: 1, color: '#06a7ff'}], false)"
)
 
# 线条样式
linestyle_dic = { 'normal': {
                    'width': 4,  
                    'shadowColor': '#696969', 
                    'shadowBlur': 10,  
                    'shadowOffsetY': 10,  
                    'shadowOffsetX': 10,  
                    }
                }
    
timeline = Timeline(init_opts=opts.InitOpts(width='980px',height='600px'))
timeline.add_schema(is_auto_play=True, is_loop_play=True, 
                    is_timeline_show=True, play_interval=500)
 
ALL, MALE, FEMALE = [], [], []
x_data=all_df['Year'].values.tolist()
x=[]
for i in x_data:
    x.append(str(i))
print(x)

for i in range(len(x)):
    ALL.append(all[i][1])
    # print(ALL)
    MALE.append(male[i][1])
    # print(MALE)
    FEMALE.append(female[i][1])
    # print(FEMALE)
    line = (
        Line(init_opts=opts.InitOpts(
                                     width='980px',height='600px'))
        .add_xaxis(x)
        # 全体线条
        .add_yaxis(
            '全体',
            ALL,
            symbol_size=10,
            is_smooth=True,
            label_opts=opts.LabelOpts(is_show=True),
            markpoint_opts=opts.MarkPointOpts(
                    data=[ opts.MarkPointItem(
                            name="",
                            type_='max',
                            value_index=0,
                            symbol_size=[40, 25],
                        )],
                    label_opts=opts.LabelOpts(is_show=False),
                )
        )
        # 男性线条
        .add_yaxis(
            '男性',
            MALE,
            symbol_size=5,
            is_smooth=True,
            label_opts=opts.LabelOpts(is_show=True),
            markpoint_opts=opts.MarkPointOpts(
                    data=[
                        opts.MarkPointItem(
                            name="",
                            type_='max',
                            value_index=0,
                            symbol_size=[40, 25],
                        )
                    ],
                    label_opts=opts.LabelOpts(is_show=False),
                )
        )
        # 女性线条
        .add_yaxis(
            '女性',
            FEMALE,
            symbol_size=5,
            is_smooth=True,
            label_opts=opts.LabelOpts(is_show=True),
            markpoint_opts=opts.MarkPointOpts(
                    data=[opts.MarkPointItem(
                            name="",
                            type_='max',
                            value_index=0,
                            symbol_size=[40, 25],
                        )],
                    label_opts=opts.LabelOpts(is_show=False),
                )
        )
        .set_series_opts(linestyle_opts=linestyle_dic)
        .set_global_opts(
            title_opts=opts.TitleOpts(
                title='男性|女性|全体历届奥运会中国参赛人数折线图',
                pos_left='center',
                pos_top='2%',
                title_textstyle_opts=opts.TextStyleOpts(
                        color='#DC143C', font_size=20)
            ),
            xaxis_opts=opts.AxisOpts(axislabel_opts=opts.LabelOpts(font_size=14, color='red'),
                         axisline_opts=opts.AxisLineOpts(is_show=True,
                            linestyle_opts=opts.LineStyleOpts(width=2, color='#DB7093'))),
            yaxis_opts=opts.AxisOpts(
                name='数量/人',            
                is_scale=True,
                max_=750,
                name_textstyle_opts=opts.TextStyleOpts(font_size=16,font_weight='bold',color='#DC143C'),
                axislabel_opts=opts.LabelOpts(font_size=13),
                splitline_opts=opts.SplitLineOpts(is_show=True, 
                                                  linestyle_opts=opts.LineStyleOpts(type_='dashed')),
                axisline_opts=opts.AxisLineOpts(is_show=True,
                                        linestyle_opts=opts.LineStyleOpts(width=2, color='#DB7093'))
            ),
            legend_opts=opts.LegendOpts(is_show=True, pos_right='1%', pos_top='2%',
                                        legend_icon='roundRect',orient = 'vertical'),
        ))
    timeline.add(line, '{}'.format(x[i]))
 
timeline.render("./Visual/[时间线折线图]男性-女性-全体历届奥运会中国参赛人数折线图.html")

可视化|历届奥运会数据可视化_第35张图片

2. 男性|女性|全体历届奥运会中国参赛人数柱状折线图
#[可视化]男性|女性|全体历届奥运会中国参赛人数柱状折线图
import pandas as pd
from pyecharts.charts import Bar
import pyecharts.options as opts
from pyecharts.globals import ThemeType,JsCode

athlete_df=pd.read_csv("./DataSet/History/athlete_events.csv")
china_df=athlete_df[athlete_df['Team']=='China']
# 全体
all_df=china_df.groupby(by=['Year'])['ID'].count().reset_index()
all=china_df.groupby(by=['Year'])['ID'].count().reset_index()['ID'].values.tolist()
# 男性
male_df=china_df[china_df['Sex']=='M']
male=male_df.groupby(by=['Year'])['ID'].count().reset_index()['ID'].values.tolist()
# 女性
female_df=china_df[china_df['Sex']=='F']
female=female_df.groupby(by=['Year'])['ID'].count().reset_index()
# 在1932年和1952年没有女性运动员
lost=pd.DataFrame({'Year':[1932,1952],'ID':[0,0]})
female=female.append(lost,ignore_index=True).sort_values(by=['Year'])['ID'].values.tolist()
# x轴数据
x_data=all_df['Year'].values.tolist()
x=[]
for i in x_data:
    x.append(str(i))

bar=(
    Bar()
    .add_xaxis(x)
    .add_yaxis("男性", male, gap="0%")
    .add_yaxis("女性", female, gap="0%")
    .extend_axis(
        yaxis=opts.AxisOpts(
            axislabel_opts=opts.LabelOpts(formatter="{value}"), interval=100, name='总人数/人'
        )
    )
    .set_series_opts(
        label_opts=opts.LabelOpts(is_show=False)
    )
    .set_global_opts(
        title_opts=opts.TitleOpts(title="男性|女性|全体历届奥运会中国参赛人数柱状折线图"),
        yaxis_opts=opts.AxisOpts(max_=800,name='人数/人',axislabel_opts=opts.LabelOpts(formatter="{value}")),
        legend_opts=opts.LegendOpts(pos_left='right'), 
        datazoom_opts=opts.DataZoomOpts()
    )
)

line = Line().add_xaxis(x).add_yaxis("全体", all, yaxis_index=1)
bar.overlap(line)
bar.render("./Visual/[柱状折线图]男性-女性-全体历届奥运会中国参赛人数柱状折线图.html")

可视化|历届奥运会数据可视化_第36张图片

3. 历届夏奥会参赛国家数量时间线折线图

  利用Pandas从CSV中获取各国家在各年份的奖牌数量:
可视化|历届奥运会数据可视化_第37张图片
可视化|历届奥运会数据可视化_第38张图片
可视化|历届奥运会数据可视化_第39张图片

#[可视化]历届夏奥会参赛国家数量趋势
from pyecharts import options as opts
from pyecharts.charts import Line,Timeline
from pyecharts.globals import ThemeType,JsCode

# 统计各国家在各年份的奖牌数量
athletes_df=pd.read_csv("./DataSet/History/athlete_events.csv")
summer_count_df=athletes_df[athletes_df['Season']=='Summer'].groupby(['Year','Team'])['Medal'].count().reset_index()
# 获取历届夏奥会参赛国家数量
engage_data=[]
years=summer_count_df['Year'].drop_duplicates()
for year in years:
    engage_data.append([year,summer_count_df.loc[summer_count_df['Year']==year].shape[0]])
 
# 线条样式
linestyle_dic = {'normal': {
    'width': 4,
    'shadowColor': '#696969',
    'shadowBlur': 10,
    'shadowOffsetY': 10,
    'shadowOffsetX': 10,
}
}
 
timeline = Timeline().add_schema(is_auto_play=True, is_loop_play=False,is_timeline_show=True, play_interval=500)
 
data = []
x_data = []
for year in years:
    x_data.append(str(year))

for i  in range(len(x_data)):
    data.append(engage_data[i][-1])
    line = (
        Line()
        .add_xaxis(x_data)
        .add_yaxis(
            '',
            data,
            symbol_size=10,
            is_smooth=True,
            label_opts=opts.LabelOpts(is_show=True),
            markpoint_opts=opts.MarkPointOpts(
                data=[opts.MarkPointItem(
                    name="",
                    type_='max',
                    value_index=0,
                    symbol_size=[40, 25],
                )],
                label_opts=opts.LabelOpts(is_show=False),
            )
        )
        .set_series_opts(linestyle_opts=linestyle_dic, label_opts=opts.LabelOpts(font_size=12))
        .set_global_opts(
            title_opts=opts.TitleOpts(
                title='历届夏奥会参赛国家数量趋势',
                title_textstyle_opts=opts.TextStyleOpts(font_size=20)),
            xaxis_opts=opts.AxisOpts(axislabel_opts=opts.LabelOpts(font_size=14),
                                        axisline_opts=opts.AxisLineOpts(is_show=True,
                                                                        linestyle_opts=opts.LineStyleOpts(width=2))),
            yaxis_opts=opts.AxisOpts(
                is_scale=True,
                name_textstyle_opts=opts.TextStyleOpts(
                    font_size=16, font_weight='bold'),
                axislabel_opts=opts.LabelOpts(
                    font_size=13),
                splitline_opts=opts.SplitLineOpts(is_show=True,
                                                    linestyle_opts=opts.LineStyleOpts(type_='dashed')),
                axisline_opts=opts.AxisLineOpts(is_show=True,
                                                linestyle_opts=opts.LineStyleOpts(width=2))
            ),
            legend_opts=opts.LegendOpts(is_show=True, pos_right='1%', pos_top='2%',legend_icon='roundRect'),
        )
    )
    timeline.add(line, '{}'.format(engage_data[i][0]))
    
timeline.render("./Visual/[时间线折线图]历届夏奥会参赛国家数量趋势.html")

可视化|历届奥运会数据可视化_第40张图片

4. 历届冬奥会参赛国家数量时间线折线图
#[可视化]历届冬奥会参赛国家数量趋势
from pyecharts import options as opts
from pyecharts.charts import Line,Timeline
from pyecharts.globals import ThemeType,JsCode

# 统计各国家在各年份的奖牌数量
athletes_df=pd.read_csv("./DataSet/History/athlete_events.csv")
winter_count_df=athletes_df[athletes_df['Season']=='Winter'].groupby(['Year','Team'])['Medal'].count().reset_index()
# 获取历届冬奥会参赛国家数量
engage_data=[]
years=winter_count_df['Year'].drop_duplicates()
for year in years:
    engage_data.append([year,winter_count_df.loc[winter_count_df['Year']==year].shape[0]])
 
# 线条样式
linestyle_dic = {'normal': {
    'width': 4,
    'shadowColor': '#696969',
    'shadowBlur': 10,
    'shadowOffsetY': 10,
    'shadowOffsetX': 10,
}
}
 
timeline = Timeline().add_schema(is_auto_play=True, is_loop_play=False,is_timeline_show=True, play_interval=500)
 
data = []
x_data = []
for year in years:
    x_data.append(str(year))

for i  in range(len(x_data)):
    data.append(engage_data[i][-1])
    line = (
        Line()
        .add_xaxis(x_data)
        .add_yaxis(
            '',
            data,
            symbol_size=10,
            is_smooth=True,
            label_opts=opts.LabelOpts(is_show=True),
            markpoint_opts=opts.MarkPointOpts(
                data=[opts.MarkPointItem(
                    name="",
                    type_='max',
                    value_index=0,
                    symbol_size=[40, 25],
                )],
                label_opts=opts.LabelOpts(is_show=False),
            )
        )
        .set_series_opts(linestyle_opts=linestyle_dic, label_opts=opts.LabelOpts(font_size=12))
        .set_global_opts(
            title_opts=opts.TitleOpts(
                title='历届冬奥会参赛国家数量趋势',
                title_textstyle_opts=opts.TextStyleOpts(font_size=20)),
            xaxis_opts=opts.AxisOpts(axislabel_opts=opts.LabelOpts(font_size=14),
                                        axisline_opts=opts.AxisLineOpts(is_show=True,
                                                                        linestyle_opts=opts.LineStyleOpts(width=2))),
            yaxis_opts=opts.AxisOpts(
                is_scale=True,
                name_textstyle_opts=opts.TextStyleOpts(
                    font_size=16, font_weight='bold'),
                axislabel_opts=opts.LabelOpts(
                    font_size=13),
                splitline_opts=opts.SplitLineOpts(is_show=True,
                                                    linestyle_opts=opts.LineStyleOpts(type_='dashed')),
                axisline_opts=opts.AxisLineOpts(is_show=True,
                                                linestyle_opts=opts.LineStyleOpts(width=2))
            ),
            legend_opts=opts.LegendOpts(is_show=True, pos_right='1%', pos_top='2%',legend_icon='roundRect'),
        )
    )
    timeline.add(line, '{}'.format(engage_data[i][0]))
    
timeline.render("./Visual/[时间线折线图]历届冬奥会参赛国家数量趋势.html")

可视化|历届奥运会数据可视化_第41张图片

5. 历届夏奥会获奖国家数量时间线折线图
#[可视化]历届夏奥会获奖国家数量趋势
from pyecharts import options as opts
from pyecharts.charts import Line,Timeline
from pyecharts.globals import ThemeType,JsCode

# 统计各国家在各年份的奖牌数量
athletes_df=pd.read_csv("./DataSet/History/athlete_events.csv")
summer_count_df=athletes_df[athletes_df['Season']=='Summer'].groupby(['Year','Team'])['Medal'].count().reset_index()
# 获取历届夏奥会获奖国家数量
medals_data=[]
years=summer_count_df['Year'].drop_duplicates()
for year in years:
    medals_data.append([year,summer_count_df.loc[(summer_count_df['Year']==year)&(summer_count_df['Medal']!=0)].shape[0]])
 
# 线条样式
linestyle_dic = {'normal': {
    'width': 4,
    'color':'#6950a1',
    'shadowColor': '#696969',
    'shadowBlur': 10,
    'shadowOffsetY': 10,
    'shadowOffsetX': 10,
}
}
 
timeline = Timeline().add_schema(is_auto_play=True, is_loop_play=False,is_timeline_show=True, play_interval=500)
 
data = []
x_data = []
for year in years:
    x_data.append(str(year))

for i  in range(len(x_data)):
    data.append(medals_data[i][-1])
    line = (
        Line()
        .add_xaxis(x_data)
        .add_yaxis(
            '',
            data,
            symbol_size=10,
            is_smooth=True,
            label_opts=opts.LabelOpts(is_show=True),
            markpoint_opts=opts.MarkPointOpts(
                data=[opts.MarkPointItem(
                    name="",
                    type_='max',
                    value_index=0,
                    symbol_size=[40, 25],
                    itemstyle_opts=opts.ItemStyleOpts(color='#6950a1')
                )],
                label_opts=opts.LabelOpts(is_show=False),
            ),
            color='#6950a1'
        )
        .set_series_opts(linestyle_opts=linestyle_dic, label_opts=opts.LabelOpts(font_size=12,color='#6950a1'))
        .set_global_opts(
            title_opts=opts.TitleOpts(
                title='历届夏奥会获奖国家数量趋势',
                title_textstyle_opts=opts.TextStyleOpts(font_size=20)),
            xaxis_opts=opts.AxisOpts(axislabel_opts=opts.LabelOpts(font_size=14),
                                        axisline_opts=opts.AxisLineOpts(is_show=True,
                                                                        linestyle_opts=opts.LineStyleOpts(width=2))),
            yaxis_opts=opts.AxisOpts(
                is_scale=True,
                name_textstyle_opts=opts.TextStyleOpts(
                    font_size=16, font_weight='bold'),
                axislabel_opts=opts.LabelOpts(
                    font_size=13),
                splitline_opts=opts.SplitLineOpts(is_show=True,
                                                    linestyle_opts=opts.LineStyleOpts(type_='dashed')),
                axisline_opts=opts.AxisLineOpts(is_show=True,
                                                linestyle_opts=opts.LineStyleOpts(width=2))
            ),
            legend_opts=opts.LegendOpts(is_show=True, pos_right='1%', pos_top='2%',legend_icon='roundRect'),
        )
    )
    timeline.add(line, '{}'.format(engage_data[i][0]))
    
timeline.render("./Visual/[时间线折线图]历届夏奥会获奖国家数量趋势.html")

可视化|历届奥运会数据可视化_第42张图片

6. 历届冬奥会获奖国家数量时间线折线图
#[可视化]历届冬奥会获奖国家数量趋势
from pyecharts import options as opts
from pyecharts.charts import Line,Timeline
from pyecharts.globals import ThemeType,JsCode

# 统计各国家在各年份的奖牌数量
athletes_df=pd.read_csv("./DataSet/History/athlete_events.csv")
winter_count_df=athletes_df[athletes_df['Season']=='Winter'].groupby(['Year','Team'])['Medal'].count().reset_index()
# 获取历届冬奥会获奖国家数量
medals_data=[]
years=winter_count_df['Year'].drop_duplicates()
for year in years:
    medals_data.append([year,winter_count_df.loc[(winter_count_df['Year']==year)&(winter_count_df['Medal']!=0)].shape[0]])
 
# 线条样式
linestyle_dic = {'normal': {
    'width': 4,
    'color':'#6950a1',
    'shadowColor': '#696969',
    'shadowBlur': 10,
    'shadowOffsetY': 10,
    'shadowOffsetX': 10,
}
}
 
timeline = Timeline().add_schema(is_auto_play=True, is_loop_play=False,is_timeline_show=True, play_interval=500)
 
data = []
x_data = []
for year in years:
    x_data.append(str(year))

for i  in range(len(x_data)):
    data.append(medals_data[i][-1])
    line = (
        Line()
        .add_xaxis(x_data)
        .add_yaxis(
            '',
            data,
            symbol_size=10,
            is_smooth=True,
            label_opts=opts.LabelOpts(is_show=True),
            markpoint_opts=opts.MarkPointOpts(
                data=[opts.MarkPointItem(
                    name="",
                    type_='max',
                    value_index=0,
                    symbol_size=[40, 25],
                    itemstyle_opts=opts.ItemStyleOpts(color='#6950a1')
                )],
                label_opts=opts.LabelOpts(is_show=False),
            ),
            color='#6950a1'
        )
        .set_series_opts(linestyle_opts=linestyle_dic, label_opts=opts.LabelOpts(font_size=12,color='#6950a1'))
        .set_global_opts(
            title_opts=opts.TitleOpts(
                title='历届冬奥会获奖国家数量趋势',
                title_textstyle_opts=opts.TextStyleOpts(font_size=20)),
            xaxis_opts=opts.AxisOpts(axislabel_opts=opts.LabelOpts(font_size=14),
                                        axisline_opts=opts.AxisLineOpts(is_show=True,
                                                                        linestyle_opts=opts.LineStyleOpts(width=2))),
            yaxis_opts=opts.AxisOpts(
                is_scale=True,
                name_textstyle_opts=opts.TextStyleOpts(
                    font_size=16, font_weight='bold'),
                axislabel_opts=opts.LabelOpts(
                    font_size=13),
                splitline_opts=opts.SplitLineOpts(is_show=True,
                                                    linestyle_opts=opts.LineStyleOpts(type_='dashed')),
                axisline_opts=opts.AxisLineOpts(is_show=True,
                                                linestyle_opts=opts.LineStyleOpts(width=2))
            ),
            legend_opts=opts.LegendOpts(is_show=True, pos_right='1%', pos_top='2%',legend_icon='roundRect'),
        )
    )
    timeline.add(line, '{}'.format(engage_data[i][0]))
    
timeline.render("./Visual/[时间线折线图]历届冬奥会获奖国家数量趋势.html")

可视化|历届奥运会数据可视化_第43张图片

7. 历届夏奥会或冬奥会参赛|获奖国家数量时间线折线图

  将上述图表组合起来,得到下列图表:
可视化|历届奥运会数据可视化_第44张图片
可视化|历届奥运会数据可视化_第45张图片

2.4 比例可视化

1. 历届夏奥会参赛国家获奖比例堆叠柱状折线图
#[可视化]历届夏奥会获奖|未获奖国家比例
from pyecharts import options as opts
from pyecharts.charts import Bar, Line
from pyecharts.globals import ThemeType

# 统计各国家在各年份的奖牌数量
athletes_df=pd.read_csv("./DataSet/History/athlete_events.csv")
summer_count_df=athletes_df[athletes_df['Season']=='Summer'].groupby(['Year','Team'])['Medal'].count().reset_index()
# 获取历届夏奥会参赛国家数量
others_data=[]
medals_data=[]
years=summer_count_df['Year'].drop_duplicates()
for year in years:
    others_data.append(summer_count_df.loc[(summer_count_df['Year']==year)&(summer_count_df['Medal']==0)].shape[0])
    medals_data.append(summer_count_df.loc[(summer_count_df['Year']==year)&(summer_count_df['Medal']!=0)].shape[0])
# 折线图数据
line_data=[]
for i in range(len(medals_data)):
    line_data.append(round(medals_data[i]/(medals_data[i]+others_data[i]),2))
x_data = []
for year in years:
    x_data.append(str(year))
bar = (
    Bar(init_opts=opts.InitOpts(theme='light'))
    .add_xaxis(x_data)
    .add_yaxis("获奖",medals_data,stack=1,z_level=2)
    .add_yaxis("未获奖",others_data,stack=1)
    .extend_axis(
        yaxis=opts.AxisOpts(
            axislabel_opts=opts.LabelOpts(formatter="{value}"),
            max_=1
        )
    )
    .set_series_opts(label_opts=opts.LabelOpts(font_size=12))
    .set_global_opts(
            title_opts=opts.TitleOpts(
                title='历届夏奥会获奖|未获奖国家分布',
                title_textstyle_opts=opts.TextStyleOpts(font_size=20)),
            xaxis_opts=opts.AxisOpts(axislabel_opts=opts.LabelOpts(font_size=14),
                                        axisline_opts=opts.AxisLineOpts(is_show=True,linestyle_opts=opts.LineStyleOpts(width=2))),
            yaxis_opts=opts.AxisOpts(
                is_scale=True,
                name_textstyle_opts=opts.TextStyleOpts(
                    font_size=16, font_weight='bold'),
                axislabel_opts=opts.LabelOpts(
                    font_size=13),
                splitline_opts=opts.SplitLineOpts(is_show=True,
                                                    linestyle_opts=opts.LineStyleOpts(type_='dashed')),
                axisline_opts=opts.AxisLineOpts(is_show=True,
                                                linestyle_opts=opts.LineStyleOpts(width=2))
            ),
            legend_opts=opts.LegendOpts(is_show=True, pos_right='1%', pos_top='2%'),
            datazoom_opts=opts.DataZoomOpts()
        )
)
line = Line().add_xaxis(x_data).add_yaxis("占比", line_data, yaxis_index=1,z_level=100)
bar.overlap(line)
bar.render("./Visual/[堆叠柱状折线图]历届夏奥会获奖-未获奖国家比例.html")

可视化|历届奥运会数据可视化_第46张图片

2. 历届冬奥会参赛国家获奖比例堆叠柱状折线图
#[可视化]历届夏奥会获奖|未获奖国家比例
from pyecharts import options as opts
from pyecharts.charts import Bar, Line
from pyecharts.globals import ThemeType

# 统计各国家在各年份的奖牌数量
athletes_df=pd.read_csv("./DataSet/History/athlete_events.csv")
count_df=athletes_df[athletes_df['Season']=='Winter'].groupby(['Year','Team'])['Medal'].count().reset_index()
# 获取历届夏奥会参赛国家数量
others_data=[]
medals_data=[]
years=count_df['Year'].drop_duplicates()
for year in years:
    others_data.append(count_df.loc[(count_df['Year']==year)&(count_df['Medal']==0)].shape[0])
    medals_data.append(count_df.loc[(count_df['Year']==year)&(count_df['Medal']!=0)].shape[0])
# 折线图数据
line_data=[]
for i in range(len(medals_data)):
    line_data.append(round(medals_data[i]/(medals_data[i]+others_data[i]),2))
x_data = []
for year in years:
    x_data.append(str(year))
bar = (
    Bar(init_opts=opts.InitOpts(theme='light'))
    .add_xaxis(x_data)
    .add_yaxis("获奖",medals_data,stack=1,z_level=2)
    .add_yaxis("未获奖",others_data,stack=1)
    .extend_axis(
        yaxis=opts.AxisOpts(
            axislabel_opts=opts.LabelOpts(formatter="{value}"),
            max_=1
        )
    )
    .set_series_opts(label_opts=opts.LabelOpts(font_size=12))
    .set_global_opts(
            title_opts=opts.TitleOpts(
                title='历届冬奥会获奖|未获奖国家分布',
                title_textstyle_opts=opts.TextStyleOpts(font_size=20)),
            xaxis_opts=opts.AxisOpts(axislabel_opts=opts.LabelOpts(font_size=14),
                                        axisline_opts=opts.AxisLineOpts(is_show=True,linestyle_opts=opts.LineStyleOpts(width=2))),
            yaxis_opts=opts.AxisOpts(
                is_scale=True,
                name_textstyle_opts=opts.TextStyleOpts(
                    font_size=16, font_weight='bold'),
                axislabel_opts=opts.LabelOpts(
                    font_size=13),
                splitline_opts=opts.SplitLineOpts(is_show=True,
                                                    linestyle_opts=opts.LineStyleOpts(type_='dashed')),
                axisline_opts=opts.AxisLineOpts(is_show=True,
                                                linestyle_opts=opts.LineStyleOpts(width=2))
            ),
            legend_opts=opts.LegendOpts(is_show=True, pos_right='1%', pos_top='2%'),
            datazoom_opts=opts.DataZoomOpts()
        )
)
line = Line().add_xaxis(x_data).add_yaxis("占比", line_data, yaxis_index=1,z_level=100)
bar.overlap(line)
bar.render("./Visual/[堆叠柱状折线图]历届冬奥会获奖-未获奖国家比例.html")

可视化|历届奥运会数据可视化_第47张图片
  至此,利用Kaggle120年奥运会数据集的数据可视化就完成啦,欢迎交流!

你可能感兴趣的:(可视化,python,数据分析,echarts,数据可视化,可视化)