Go 是一门简单有趣的编程语言,与其他语言一样,在使用时不免会遇到很多坑,不过它们大多不是 Go 本身的设计缺陷。如果你刚从其他语言转到 Go,那这篇文章里的坑多半会踩到。
如果花时间学习官方 doc、wiki、讨论邮件列表、 Rob Pike 的大量文章以及 Go 的源码,会发现这篇文章中的坑是很常见的,跳过这些坑,能减少大量调试代码的时间。
使用 HTTP 标准库发起请求、获取响应时,即使你不从响应中读取任何数据或响应为空,都需要手动关闭响应体。初学者很容易忘记手动关闭,或者写在了错误的位置:
// 请求失败造成 panic
func main() {
resp, err := http.Get("https://api.ipify.org?format=json")
defer resp.Body.Close() // resp 可能为 nil,不能读取 Body
if err != nil {
fmt.Println(err)
return
}
body, err := ioutil.ReadAll(resp.Body)
checkError(err)
fmt.Println(string(body))
}
func checkError(err error) {
if err != nil{
log.Fatalln(err)
}
}
上边的代码能正确发起请求,但是一旦请求失败,变量 resp 值为 nil,造成 panic:
panic: runtime error: invalid memory address or nil pointer dereference
应该先检查 HTTP 响应错误为 nil,再调用 resp.Body.Close() 来关闭响应体:
// 大多数情况正确的示例
func main() {
resp, err := http.Get("https://api.ipify.org?format=json")
checkError(err)
defer resp.Body.Close() // 绝大多数情况下的正确关闭方式
body, err := ioutil.ReadAll(resp.Body)
checkError(err)
fmt.Println(string(body))
}
输出:
Get https://api.ipify.org?format=...: x509: certificate signed by unknown authority
绝大多数请求失败的情况下,resp 的值为 nil 且 err 为 non-nil。但如果你得到的是重定向错误,那它俩的值都是 non-nil,最后依旧可能发生内存泄露。2 个解决办法:
// 正确示例
func main() {
resp, err := http.Get("http://www.baidu.com")
// 关闭 resp.Body 的正确姿势
if resp != nil {
defer resp.Body.Close()
}
checkError(err)
defer resp.Body.Close()
body, err := ioutil.ReadAll(resp.Body)
checkError(err)
fmt.Println(string(body))
}
resp.Body.Close() 早先版本的实现是读取响应体的数据之后丢弃,保证了 keep-alive 的 HTTP 连接能重用处理不止一个请求。但 Go 的最新版本将读取并丢弃数据的任务交给了用户,如果你不处理,HTTP 连接可能会直接关闭而非重用,参考在 Go 1.5 版本文档。
如果程序大量重用 HTTP 长连接,你可能要在处理响应的逻辑代码中加入:
_, err = io.Copy(ioutil.Discard, resp.Body) // 手动丢弃读取完毕的数据
如果你需要完整读取响应,上边的代码是需要写的。比如在解码 API 的 JSON 响应数据:
json.NewDecoder(resp.Body).Decode(&data)
一些支持 HTTP1.1 或 HTTP1.0 配置了 connection: keep-alive 选项的服务器会保持一段时间的长连接。但标准库 “net/http” 的连接默认只在服务器主动要求关闭时才断开,所以你的程序可能会消耗完 socket 描述符。解决办法有 2 个,请求结束后:
// 主动关闭连接
func main() {
req, err := http.NewRequest("GET", "http://golang.org", nil)
checkError(err)
req.Close = true
//req.Header.Add("Connection", "close") // 等效的关闭方式
resp, err := http.DefaultClient.Do(req)
if resp != nil {
defer resp.Body.Close()
}
checkError(err)
body, err := ioutil.ReadAll(resp.Body)
checkError(err)
fmt.Println(string(body))
}
你可以创建一个自定义配置的 HTTP transport 客户端,用来取消 HTTP 全局的复用连接:
func main() {
tr := http.Transport{DisableKeepAlives: true}
client := http.Client{Transport: &tr}
resp, err := client.Get("https://golang.google.cn/")
if resp != nil {
defer resp.Body.Close()
}
checkError(err)
fmt.Println(resp.StatusCode) // 200
body, err := ioutil.ReadAll(resp.Body)
checkError(err)
fmt.Println(len(string(body)))
}
根据需求选择使用场景:
在 encode/decode JSON 数据时,Go 默认会将数值当做 float64 处理,比如下边的代码会造成 panic:
func main() {
var data = []byte(`{"status": 200}`)
var result map[string]interface{}
if err := json.Unmarshal(data, &result); err != nil {
log.Fatalln(err)
}
fmt.Printf("%T\n", result["status"]) // float64
var status = result["status"].(int) // 类型断言错误
fmt.Println("Status value: ", status)
}
panic: interface conversion: interface {} is float64, not int
如果你尝试 decode 的 JSON 字段是整型,你可以:
func main() {
var data = []byte(`{"status": 200}`)
var result map[string]interface{}
if err := json.Unmarshal(data, &result); err != nil {
log.Fatalln(err)
}
var status = uint64(result["status"].(float64))
fmt.Println("Status value: ", status)
}
// 指定字段类型
func main() {
var data = []byte(`{"status": 200}`)
var result map[string]interface{}
var decoder = json.NewDecoder(bytes.NewReader(data))
decoder.UseNumber()
if err := decoder.Decode(&result); err != nil {
log.Fatalln(err)
}
var status, _ = result["status"].(json.Number).Int64()
fmt.Println("Status value: ", status)
}
// 你可以使用 string 来存储数值数据,在 decode 时再决定按 int 还是 float 使用
// 将数据转为 decode 为 string
func main() {
var data = []byte({"status": 200})
var result map[string]interface{}
var decoder = json.NewDecoder(bytes.NewReader(data))
decoder.UseNumber()
if err := decoder.Decode(&result); err != nil {
log.Fatalln(err)
}
var status uint64
err := json.Unmarshal([]byte(result["status"].(json.Number).String()), &status);
checkError(err)
fmt.Println("Status value: ", status)
}
使用 struct 类型将你需要的数据映射为数值型
// struct 中指定字段类型
func main() {
var data = []byte(`{"status": 200}`)
var result struct {
Status uint64 `json:"status"`
}
err := json.NewDecoder(bytes.NewReader(data)).Decode(&result)
checkError(err)
fmt.Printf("Result: %+v", result)
}
// 状态名称可能是 int 也可能是 string,指定为 json.RawMessage 类型
func main() {
records := [][]byte{
[]byte(`{"status":200, "tag":"one"}`),
[]byte(`{"status":"ok", "tag":"two"}`),
}
for idx, record := range records {
var result struct {
StatusCode uint64
StatusName string
Status json.RawMessage `json:"status"`
Tag string `json:"tag"`
}
err := json.NewDecoder(bytes.NewReader(record)).Decode(&result)
checkError(err)
var name string
err = json.Unmarshal(result.Status, &name)
if err == nil {
result.StatusName = name
}
var code uint64
err = json.Unmarshal(result.Status, &code)
if err == nil {
result.StatusCode = code
}
fmt.Printf("[%v] result => %+v\n", idx, result)
}
可以使用相等运算符 == 来比较结构体变量,前提是两个结构体的成员都是可比较的类型:
type data struct {
num int
fp float32
complex complex64
str string
char rune
yes bool
events <-chan string
handler interface{}
ref *byte
raw [10]byte
}
func main() {
v1 := data{}
v2 := data{}
fmt.Println("v1 == v2: ", v1 == v2) // true
}
如果两个结构体中有任意成员是不可比较的,将会造成编译错误。注意数组成员只有在数组元素可比较时候才可比较。
type data struct {
num int
checks [10]func() bool // 无法比较
doIt func() bool // 无法比较
m map[string]string // 无法比较
bytes []byte // 无法比较
}
func main() {
v1 := data{}
v2 := data{}
fmt.Println("v1 == v2: ", v1 == v2)
}
invalid operation: v1 == v2 (struct containing [10]func() bool cannot
be compared)
Go 提供了一些库函数来比较那些无法使用 == 比较的变量,比如使用 “reflect” 包的 DeepEqual() :
// 比较相等运算符无法比较的元素
func main() {
v1 := data{}
v2 := data{}
fmt.Println("v1 == v2: ", reflect.DeepEqual(v1, v2)) // true
m1 := map[string]string{"one": "a", "two": "b"}
m2 := map[string]string{"two": "b", "one": "a"}
fmt.Println("v1 == v2: ", reflect.DeepEqual(m1, m2)) // true
s1 := []int{1, 2, 3}
s2 := []int{1, 2, 3}
// 注意两个 slice 相等,值和顺序必须一致
fmt.Println("v1 == v2: ", reflect.DeepEqual(s1, s2)) // true
}
这种比较方式可能比较慢,根据你的程序需求来使用。DeepEqual() 还有其他用法:
func main() {
var b1 []byte = nil
b2 := []byte{}
fmt.Println("b1 == b2: ", reflect.DeepEqual(b1, b2)) // false
}
注意:
func main() {
var str = "one"
var in interface{} = "one"
fmt.Println("str == in: ", reflect.DeepEqual(str, in)) // true
v1 := []string{"one", "two"}
v2 := []string{"two", "one"}
fmt.Println("v1 == v2: ", reflect.DeepEqual(v1, v2)) // false
data := map[string]interface{}{
"code": 200,
"value": []string{"one", "two"},
}
encoded, _ := json.Marshal(data)
var decoded map[string]interface{}
json.Unmarshal(encoded, &decoded)
fmt.Println("data == decoded: ", reflect.DeepEqual(data, decoded)) // false
}
如果要大小写不敏感来比较 byte 或 string 中的英文文本,可以使用 “bytes” 或 “strings” 包的 ToUpper() 和 ToLower() 函数。比较其他语言的 byte 或 string,应使用 bytes.EqualFold() 和 strings.EqualFold()
如果 byte slice 中含有验证用户身份的数据(密文哈希、token 等),不应再使用 reflect.DeepEqual()、bytes.Equal()、 bytes.Compare()。这三个函数容易对程序造成 timing attacks,此时应使用 “crypto/subtle” 包中的 subtle.ConstantTimeCompare() 等函数
func main() {
var b1 []byte = nil
b2 := []byte{}
// b1 与 b2 长度相等、有相同的字节序
// nil 与 slice 在字节上是相同的
fmt.Println("b1 == b2: ", bytes.Equal(b1, b2)) // true
}
在一个 defer 延迟执行的函数中调用 recover() ,它便能捕捉 / 中断 panic
// 错误的 recover 调用示例
func main() {
recover() // 什么都不会捕捉
panic("not good") // 发生 panic,主程序退出
recover() // 不会被执行
println("ok")
}
// 正确的 recover 调用示例
func main() {
defer func() {
fmt.Println("recovered: ", recover())
}()
panic("not good")
}
从上边可以看出,recover() 仅在 defer 执行的函数中调用才会生效。
// 错误的调用示例
func main() {
defer func() {
doRecover()
}()
panic("not good")
}
func doRecover() {
fmt.Println("recobered: ", recover())
}
recobered: panic: not good
在 range 迭代中,得到的值其实是元素的一份值拷贝,更新拷贝并不会更改原来的元素,即是拷贝的地址并不是原有元素的地址:
func main() {
data := []int{1, 2, 3}
for _, v := range data {
v *= 10 // data 中原有元素是不会被修改的
}
fmt.Println("data: ", data) // data: [1 2 3]
}
如果要修改原有元素的值,应该使用索引直接访问:
func main() {
data := []int{1, 2, 3}
for i, v := range data {
data[i] = v * 10
}
fmt.Println("data: ", data) // data: [10 20 30]
}
如果你的集合保存的是指向值的指针,需稍作修改。依旧需要使用索引访问元素,不过可以使用 range 出来的元素直接更新原有值:
func main() {
data := []*struct{ num int }{{1}, {2}, {3},}
for _, v := range data {
v.num *= 10 // 直接使用指针更新
}
fmt.Println(data[0], data[1], data[2]) // &{10} &{20} &{30}
}
从 slice 中重新切出新 slice 时,新 slice 会引用原 slice 的底层数组。如果跳了这个坑,程序可能会分配大量的临时 slice 来指向原底层数组的部分数据,将导致难以预料的内存使用。
func get() []byte {
raw := make([]byte, 10000)
fmt.Println(len(raw), cap(raw), &raw[0]) // 10000 10000 0xc420080000
return raw[:3] // 重新分配容量为 10000 的 slice
}
func main() {
data := get()
fmt.Println(len(data), cap(data), &data[0]) // 3 10000 0xc420080000
}
可以通过拷贝临时 slice 的数据,而不是重新切片来解决:
func get() (res []byte) {
raw := make([]byte, 10000)
fmt.Println(len(raw), cap(raw), &raw[0]) // 10000 10000 0xc420080000
res = make([]byte, 3)
copy(res, raw[:3])
return
}
func main() {
data := get()
fmt.Println(len(data), cap(data), &data[0]) // 3 3 0xc4200160b8
}
举个简单例子,重写文件路径(存储在 slice 中)
分割路径来指向每个不同级的目录,修改第一个目录名再重组子目录名,创建新路径:
// 错误使用 slice 的拼接示例
func main() {
path := []byte("AAAA/BBBBBBBBB")
sepIndex := bytes.IndexByte(path, '/') // 4
println(sepIndex)
dir1 := path[:sepIndex]
dir2 := path[sepIndex+1:]
println("dir1: ", string(dir1)) // AAAA
println("dir2: ", string(dir2)) // BBBBBBBBB
dir1 = append(dir1, "suffix"...)
println("current path: ", string(path)) // AAAAsuffixBBBB
path = bytes.Join([][]byte{dir1, dir2}, []byte{'/'})
println("dir1: ", string(dir1)) // AAAAsuffix
println("dir2: ", string(dir2)) // uffixBBBB
println("new path: ", string(path)) // AAAAsuffix/uffixBBBB // 错误结果
}
拼接的结果不是正确的 AAAAsuffix/BBBBBBBBB,因为 dir1、 dir2 两个 slice 引用的数据都是 path 的底层数组,第 13 行修改 dir1 同时也修改了 path,也导致了 dir2 的修改
解决方法:
// 使用 full slice expression
func main() {
path := []byte("AAAA/BBBBBBBBB")
sepIndex := bytes.IndexByte(path, '/') // 4
dir1 := path[:sepIndex:sepIndex] // 此时 cap(dir1) 指定为4, 而不是先前的 16
dir2 := path[sepIndex+1:]
dir1 = append(dir1, "suffix"...)
path = bytes.Join([][]byte{dir1, dir2}, []byte{'/'})
println("dir1: ", string(dir1)) // AAAAsuffix
println("dir2: ", string(dir2)) // BBBBBBBBB
println("new path: ", string(path)) // AAAAsuffix/BBBBBBBBB
}
第 6 行中第三个参数是用来控制 dir1 的新容量,再往 dir1 中 append 超额元素时,将分配新的 buffer 来保存。而不是覆盖原来的 path 底层数组
当你从一个已存在的 slice 创建新 slice 时,二者的数据指向相同的底层数组。如果你的程序使用这个特性,那需要注意 “旧”(stale) slice 问题。
某些情况下,向一个 slice 中追加元素而它指向的底层数组容量不足时,将会重新分配一个新数组来存储数据。而其他 slice 还指向原来的旧底层数组。
// 超过容量将重新分配数组来拷贝值、重新存储
func main() {
s1 := []int{1, 2, 3}
fmt.Println(len(s1), cap(s1), s1) // 3 3 [1 2 3 ]
s2 := s1[1:]
fmt.Println(len(s2), cap(s2), s2) // 2 2 [2 3]
for i := range s2 {
s2[i] += 20
}
// 此时的 s1 与 s2 是指向同一个底层数组的
fmt.Println(s1) // [1 22 23]
fmt.Println(s2) // [22 23]
s2 = append(s2, 4) // 向容量为 2 的 s2 中再追加元素,此时将分配新数组来存
for i := range s2 {
s2[i] += 10
}
fmt.Println(s1) // [1 22 23] // 此时的 s1 不再更新,为旧数据
fmt.Println(s2) // [32 33 14]
}
从一个现有的非 interface 类型创建新类型时,并不会继承原有的方法:
// 定义 Mutex 的自定义类型
type myMutex sync.Mutex
func main() {
var mtx myMutex
mtx.Lock()
mtx.UnLock()
}
mtx.Lock undefined (type myMutex has no field or method Lock)…
如果你需要使用原类型的方法,可将原类型以匿名字段的形式嵌到你定义的新 struct 中:
// 类型以字段形式直接嵌入
type myLocker struct {
sync.Mutex
}
func main() {
var locker myLocker
locker.Lock()
locker.Unlock()
}
interface 类型声明也保留它的方法集:
type myLocker sync.Locker
func main() {
var locker myLocker
locker.Lock()
locker.Unlock()
}
没有指定标签的 break 只会跳出 switch/select 语句,若不能使用 return 语句跳出的话,可为 break 跳出标签指定的代码块:
// break 配合 label 跳出指定代码块
func main() {
loop:
for {
switch {
case true:
fmt.Println("breaking out...")
//break // 死循环,一直打印 breaking out...
break loop
}
}
fmt.Println("out...")
}
goto 虽然也能跳转到指定位置,但依旧会再次进入 for-switch,死循环。
for 语句中的迭代变量在每次迭代中都会重用,即 for 中创建的闭包函数接收到的参数始终是同一个变量,在 goroutine 开始执行时都会得到同一个迭代值:
func main() {
data := []string{"one", "two", "three"}
for _, v := range data {
go func() {
fmt.Println(v)
}()
}
time.Sleep(3 * time.Second)
// 输出 three three three
}
最简单的解决方法:无需修改 goroutine 函数,在 for 内部使用局部变量保存迭代值,再传参:
func main() {
data := []string{"one", "two", "three"}
for _, v := range data {
vCopy := v
go func() {
fmt.Println(vCopy)
}()
}
time.Sleep(3 * time.Second)
// 输出 one two three
}
另一个解决方法:直接将当前的迭代值以参数形式传递给匿名函数:
func main() {
data := []string{"one", "two", "three"}
for _, v := range data {
go func(in string) {
fmt.Println(in)
}(v)
}
time.Sleep(3 * time.Second)
// 输出 one two three
}
注意下边这个稍复杂的 3 个示例区别:
type field struct {
name string
}
func (p *field) print() {
fmt.Println(p.name)
}
// 错误示例
func main() {
data := []field{{"one"}, {"two"}, {"three"}}
for _, v := range data {
go v.print()
}
time.Sleep(3 * time.Second)
// 输出 three three three
}
// 正确示例
func main() {
data := []field{{"one"}, {"two"}, {"three"}}
for _, v := range data {
v := v
go v.print()
}
time.Sleep(3 * time.Second)
// 输出 one two three
}
// 正确示例
func main() {
data := []*field{{"one"}, {"two"}, {"three"}}
for _, v := range data { // 此时迭代值 v 是三个元素值的地址,每次 v 指向的值不同
go v.print()
}
time.Sleep(3 * time.Second)
// 输出 one two three
}
对 defer 延迟执行的函数,它的参数会在声明时候就会求出具体值,而不是在执行时才求值:
// 在 defer 函数中参数会提前求值
func main() {
var i = 1
defer fmt.Println("result: ", func() int { return i * 2 }())
i++
}
result: 2
对 defer 延迟执行的函数,会在调用它的函数结束时执行,而不是在调用它的语句块结束时执行,注意区分开。
比如在一个长时间执行的函数里,内部 for 循环中使用 defer 来清理每次迭代产生的资源调用,就会出现问题:
// 命令行参数指定目录名
// 遍历读取目录下的文件
func main() {
if len(os.Args) != 2 {
os.Exit(1)
}
dir := os.Args[1]
start, err := os.Stat(dir)
if err != nil || !start.IsDir() {
os.Exit(2)
}
var targets []string
filepath.Walk(dir, func(fPath string, fInfo os.FileInfo, err error) error {
if err != nil {
return err
}
if !fInfo.Mode().IsRegular() {
return nil
}
targets = append(targets, fPath)
return nil
})
for _, target := range targets {
f, err := os.Open(target)
if err != nil {
fmt.Println("bad target:", target, "error:", err) //error:too many open files
break
}
defer f.Close() // 在每次 for 语句块结束时,不会关闭文件资源
// 使用 f 资源
}
}
先创建 10000 个文件:
#!/bin/bash
for n in {1..10000}; do
echo content > "file${n}.txt"
done
运行效果:
解决办法:defer 延迟执行的函数写入匿名函数中:
// 目录遍历正常
func main() {
// ...
for _, target := range targets {
func() {
f, err := os.Open(target)
if err != nil {
fmt.Println("bad target:", target, "error:", err)
return // 在匿名函数内使用 return 代替 break 即可
}
defer f.Close() // 匿名函数执行结束,调用关闭文件资源
// 使用 f 资源
}()
}
}
当然你也可以去掉 defer,在文件资源使用完毕后,直接调用 f.Close() 来关闭。
在类型断言语句中,断言失败则会返回目标类型的“零值”,断言变量与原来变量混用可能出现异常情况:
// 错误示例
func main() {
var data interface{} = "great"
// data 混用
if data, ok := data.(int); ok {
fmt.Println("[is an int], data: ", data)
} else {
fmt.Println("[not an int], data: ", data) // [isn't a int], data: 0
}
}
// 正确示例
func main() {
var data interface{} = "great"
if res, ok := data.(int); ok {
fmt.Println("[is an int], data: ", res)
} else {
fmt.Println("[not an int], data: ", data) // [not an int], data: great
}
}
在 2012 年 Google I/O 大会上,Rob Pike 的 Go Concurrency Patterns 演讲讨论 Go 的几种基本并发模式,如 完整代码 中从数据集中获取第一条数据的函数:
func First(query string, replicas []Search) Result {
c := make(chan Result)
replicaSearch := func(i int) { c <- replicas[i](query) }
for i := range replicas {
go replicaSearch(i)
}
return <-c
}
在搜索重复时依旧每次都起一个 goroutine 去处理,每个 goroutine 都把它的搜索结果发送到结果 channel 中,channel 中收到的第一条数据会直接返回。
返回完第一条数据后,其他 goroutine 的搜索结果怎么处理?他们自己的协程如何处理?
在 First() 中的结果 channel 是无缓冲的,这意味着只有第一个 goroutine 能返回,由于没有 receiver,其他的 goroutine 会在发送上一直阻塞。如果你大量调用,则可能造成资源泄露。
为避免泄露,你应该确保所有的 goroutine 都能正确退出,有 2 个解决方法:
func First(query string, replicas ...Search) Result {
c := make(chan Result,len(replicas))
searchReplica := func(i int) { c <- replicas[i](query) }
for i := range replicas {
go searchReplica(i)
}
return <-c
}
func First(query string, replicas ...Search) Result {
c := make(chan Result,1)
searchReplica := func(i int) {
select {
case c <- replicas[i](query):
default:
}
}
for i := range replicas {
go searchReplica(i)
}
return <-c
}
func First(query string, replicas ...Search) Result {
c := make(chan Result)
done := make(chan struct{})
defer close(done)
searchReplica := func(i int) {
select {
case c <- replicas[i](query):
case <- done:
}
}
for i := range replicas {
go searchReplica(i)
}
return <-c
}
为了简化演示,没有提及演讲代码中存在的这些问题。不过对于初学者来说,可能会不加思考直接使用。
参考转自:http://devs.cloudimmunity.com/gotchas-and-common-mistakes-in-go-golang/index.html#string_byte_slice_conv