Apache RocketMQ 在阿里云大规模商业化实践之路

作者:周新宇

阿里云消息队列 RocketMQ 商业化历程

Apache RocketMQ 在阿里云大规模商业化实践之路_第1张图片

RocketMQ 诞生于 2012 年,诞生即开源。2012~2015 年,RocketMQ 一直在通过内部电商业务打磨自身服务能力,并在 2015 年于阿里云上线公测。2016 年,阿里云 RocketMQ 完成商业化,同时被捐赠给 Apache 基金会,同年获得了年度受欢迎中国开源软件荣誉。

在 Apache 孵化期间,Apache RocketMQ 经历了快速发展,2017 年即毕业成为了 Apache 顶级项目。同年,Apache RocketMQ TLP RocketMQ 4.0 正式发布。此后,RocketMQ 4.0 经历了长足发展,期间阿里云商业和开源相辅相成、齐头并进,直到今天,共同迈入 RocketMQ 5.0 时代。

RocketMQ 5.0 发布后,阿里云商业会持续采取 OpenCore 的发展模式,秉承上游优先的社区发展原则,与社区一起将 RocketMQ 打造为一个超融合的数据处理平台。

阿里云消息队列产品矩阵

Apache RocketMQ 在阿里云大规模商业化实践之路_第2张图片

阿里云基于 RocketMQ 消息底座,构建了多元化的消息产品系列。

RocketMQ 是阿里云主打的消息品牌,互联网新兴业务领域首选的数据通道。消息队列 Kafka 是大数据的首选数据通道,微消息队列 MQTT 是移动互联网和物联网的数据通道,消息队列 RocketMQ 是传统业务领域的数据通道。消息服务 MNS 是 RocketMQ 轻量版,主要应用于应用集成领域,为平台型应用提供简单的队列服务。事件总线 Event Bridge 定位为云上事件枢纽,旨在阿里云上构建统一的事件中心。

阿里云消息队列产品矩阵完全构建在 RocketMQ 之上,基本实现了应用场景全覆盖,包括微服务解耦、SaaS 集成、物联网、大数据或日志收集生态,同时也在内部覆盖了阿里巴巴所有业务,在云上为数万阿里云企业提供了优质的消息服务。阿里云的消息产品矩阵涵盖了互联网、大数据、移动互联网等领域业务场景,为云原生客户提供不可或缺的一站式解决方案。

RocketMQ 在阿里云商业化历程中,一直致力于探索业务消息实践,也孵化了大量业务消息特性,并持续反哺到开源社区。

RocketMQ 4.0 业务消息探索之路

Apache RocketMQ 在阿里云大规模商业化实践之路_第3张图片

RocketMQ 在商业化过程中,陆续推出了四种消息类型来满足丰富的业务场景。

  • 普通消息:普通消息提供极致弹性、海量堆积能力,内置重试与死信队列来满足业务对失败重试的需求,同时具备高吞吐、高可用、低延迟等特性,广泛应用于应用集成、异步解耦、削峰填谷等场景。

  • 定时消息:提供秒级定时精度, 40 天超长定时,主要面向分布式定时调度、任务超时处理等场景,目前正在开源中。

  • 顺序消息:支持全局与局部严格有序,从发送、存储到消费,保证端到端有序。面向有序事件处理、撮合交易、数据实时增量同步等场景。

  • 事务消息:分布式、高性能、高可用的最终一致性事务解决方案,广泛应用于电商交易系统中服务的一致性协调场景并且已经开源。

Apache RocketMQ 在阿里云大规模商业化实践之路_第4张图片

RocketMQ 4.0 期间,商业和开源都致力于全方位拓展消息接入能力,使 RocketMQ 能够非常轻松地连接应用开源和云产品生态。比如商业上提供了多语言 SDK ,开源也有相应的 SDK 能够覆盖 Java、Go、Python 、C++使用 RocketMQ。同时支持 Spring 生态,能够通过 Spring Cloud 的方式使用 RocketMQ。商业上提供了一组非常简单易用的 HTTP API,提供了 6-7 种语言的实现。

除了 SDK 接入,RocketMQ 也在积极拥抱社区标准,在云产品侧提供了 AMQP 和 MQTT 的接入能力,其中 MQTT 已开源。

RocketMQ 也大力在发展 connector 生态,能够通过 RocketMQ connector 接入很多数据源,包括 Redis、MongoDB、Hudi 等大数据系统。

另外,阿里云构建的事件总线 EventBridge 也已开源,通过该产品能够将阿里云的云产品、SaaS 应用、自建数据平台的数据引入 RocketMQ。

RocketMQ 4.0 版本做了大量尝试,提供了全方位的消息接入能力。

Apache RocketMQ 在阿里云大规模商业化实践之路_第5张图片

RocketMQ 在服务阿里集团用户和商业化历程中,沉淀了大量领先的业务消息处理与服务能力。比如消息订阅方面,RocketMQ 支持集群分布式消费能力,也支持广播消费。在消息处理方面支持基于 Tag 和 SQL 做灵活过滤,其中基于 SQL 过滤是电商交易中非常重要的特性,能够支持在非常订阅比的情况下实现较低的投递比。

全球消息路由能力具备性能高、实时性强的特点。在云时代,数据中心天然分布在各个地域,各个地域之间还有 VPC 网络隔离。但是通过全球消息路由功能可以将地域与网络打通,能够满足更多业务场景。比如在阿里内部基于该能力实现了异地多活、异地容灾等企业级特性。

另外,全球消息路由具备非常高的易用性,提供了可视化任务管理界面,通过简单配置即可创建复制链路。

消息治理方面,RocketMQ 提供了访问控制、命名空间、实例限流、消息回放、重试消息、死信消息、堆积治理等能力。

服务能力方面,RocketMQ 经历了非常多沉淀,它在为交易链路服务了 12 年,参加了 10 年双 11,这也保证了 RocketMQ 能够在阿里云上提供非常高的可靠性。双 11 消息收发 TPS 峰值过亿,日消息收发总量超过 3 万亿。而即使在双十一万亿级数据洪峰下,消息也能做到 99.996% 毫秒级响应能力,消息发布平均响应时间不超过 3 毫秒,最大不超过 20 毫秒,真正实现了低延迟消息发布。

Apache RocketMQ 在阿里云大规模商业化实践之路_第6张图片

商业化初期,客户遇到最大难题是在分布式环境下如何完整地追踪异步消息链路。基于此背景,我们打造了可视化全生命周期消息轨迹追踪系统,能够提供丰富的消息查询、消息下载、定点重投、轨迹追踪能力,通过可观测系统帮助用户解决分布式环境中不可观测的问题。

如上图所示,一条消息从产生、发送至服务端存储到最终投递到消费者,整个发送和消费轨迹都有迹可循,包括投递给哪些消费者、哪些消费者在什么地方成功消费或者消费失败、何时进行重投,真正帮助客户解决了分布式观测难题。

Apache RocketMQ 在阿里云大规模商业化实践之路_第7张图片

除了功能特性,RocketMQ 在稳定性方面也做了很多建设。我们始终坚持,SLA 是云原生的根本,因此整个研发运维链路都有严格的稳定性保障措施:

  • 架构开发:每个方案设计都会面向失败设计,代码开发阶段会有严格 Code Review 阶段,也会完整经历单元测试、集成测试、性能测试和容灾测试流程。

  • 变更管理:有着非常严格的变更制度,要做到每个变更可灰度、可监控、可回滚、可降级。

  • 稳定性防护:提供了限流、降级、容量评估、应急方案、大促保障等能力,会定期进行故障和预案演练,定期进行风险梳理。

  • 体系化巡检:在云上有全方位的生产环境黑盒巡检。基于用户视角,会对全地域所有功能做全功能扫描,包含高达 50 多项检测项,任意项功能出问题都能立刻被监测到。在白盒巡检方面,会对 JVM 运行时指标、内核系统、集群指标进行巡检。

  • 故障应急:有完整地故障应急流程,包括监控报警、故障发生、快速止血、排查根因、故障复盘。

RocketMQ 5.0 云原生架构升级之路

云原生时代,云上用户对云产品服务化程度、弹性能力、可控制性能力以及韧性都有了更高的要求。在此背景之下,我们对 RocketMQ 进行了云原生架构升级,这也是 RocketMQ 5.0 的诞生背景。

Apache RocketMQ 在阿里云大规模商业化实践之路_第8张图片

  • 轻量级 SDK:基于云原生通信标准 gRPC 开发了一组轻量级 SDK,能够与当前富客户端优势互补。

  • 无状态消息网关:在核心数据链路推出了无状态消息网关。通过搭建无状态服务节点Proxy,再通过 LB 进行服务暴露,将存储节点数据分离来独立负责核心消息存储和高可用。Proxy 与 Store 节点分离部署,独立弹性。

  • Leaderless 高可用架构:Store 节点身份完全对等,完全 Leaderless 化,去 ZK 和 HA 管控节点,能够做到非常高的可用性。同时相比传统的 Raft 一致性协议,该 Leaderless 架构能够做到副本数灵活选择,同步异步自动升降级,实现秒级故障转移。高可用架构目前已经完成开源并与 Dledger 进行了融合。

  • 云原生基础设施:可观测验能力云原生化,OpenTelemetry 标准化。整体架构走向 Kubernetes 化,能够充分利用售卖区的资源弹性能力。

Apache RocketMQ 在阿里云大规模商业化实践之路_第9张图片

RocketMQ 4.0 推荐的接入方式主要是富客户端。富客户端提供了诸如客户端侧负载均衡、消息缓存、故障转移等一系列企业级特性。但在云原生时代,轻量级、高性能的客户端更容易被云原生技术栈所集成。

因此,RocketMQ 5.0 重磅推出了全新多语言轻量级 SDK,具有以下优势:

  • 全新极简 API 设计:不可变 API,有完善的错误处理。多语言 SDK 保障 API 在 Native 层面对齐。同时引入了全新的 Simple Consumer,能够支持按消息模型进行消费,用户不再需要关心消息队列,只需要关注消息。

  • 通信层采用 gRPC 协议:拥抱云原生通信标准,gRPC 能够使服务更易被集成。多语言 SDK 通信代码也可以通过 gRPC 快速生成,更 Native 。

  • 轻量级实现:采用无状态消费模式,能够大幅降低客户端的实现复杂度。客户端更轻量,采用的应用也更容易被 Serverless化、Mesh 化。

  • 云原生可观测性:客户端实现了 OpenTelemetry 标准,能够支持以 OpenTelemetry 形式导出 Metrics 与 Tracing。

Apache RocketMQ 在阿里云大规模商业化实践之路_第10张图片

RocketMQ 5.0 的另一个重大升级是引入了全新的无状态消费模型。该消费模型完全构建在原先的队列模型之上。队列模型是与存储模型一致的消费模型,消费者完全按照队列做负载均衡,也按照队列做消息拉取,非常适合批量高速拉取以及对单条消息状态不敏感的场景,比如流计算等。

RocketMQ 5.0 推出了 PoP 机制,巧妙地在队列模型之上构建了消息模型,实现了鱼与熊掌兼得。在此消息模型的设计上,业务可以只关心消息而无需关心队列,所有 API 都能够支持单条消息级别的消费、重试、修改不可见时间、删除。

在消息模型下,消息发送过来被存储后,即对消费者可见。消费者通过 Receive Message API 对消息进行消费后,消息进入定时不可见状态。消息超时过后又会重新处于可见状态,能被其他消费者继续消费。某消费者确认消息后,服务端会对该消息进行删除,随即不可见。

基于消息系模型的消费流程下,API 完全面向消息而不是面向队列。而当 PoP 机制遇见了无状态 Proxy,除了存储层,其他节点都是无状态的;客户端、连接和消费也是无状态的,可任意在 Proxy 节点上飘移,真正做到轻量级。

Apache RocketMQ 在阿里云大规模商业化实践之路_第11张图片

经过重构,RocketMQ 5.0 的可观测性也走向了云原生标准。

Metrics 侧:

  • 指标涵盖丰富:设计了更丰富的指标,包含消息量、堆积量、各个阶段耗时等指标,每个指标从实例、Topic、消费 GroupID 多维度做聚合和展示。
  • 消息团队实践模板:为用户提供实践模板,并持续迭代更新。
  • Prometheus + Grafana:Prometheus 标准数据格式,利用 Grafana 展示。除了模板,用户也可以自定义展示大盘。

Tracing 侧:

  • OpenTelemetry Tracing 标准:RocketMQ Tracing 标准已经合并到 OpenTelemetry 开源标准,提供了规范和丰富的 messaging tracing 场景定义。
  • 消息领域定制化展示:按照消息维度重新组织抽象的请求 span数据,展示一对多的消费,多次消费信息直观且方便理解。
  • 可衔接 tracing 链路上下游:消息的 tracing 可继承调用上下文,补充到完整的调用链路中,消息链路信息串联了异步链路的上游和下游链路信息。

Logging 侧:

  • Error Code 标准化:不同的错误有唯一的 Error Code。
  • Error Message 完整:包含完整的错误信息和排序所需要的资源信息。
  • Error Level 标准化:细化了各种不同错误信息的日志级别,用户可根据 Error、Warn 等级别配置更适合的监控告警。

Apache RocketMQ 在阿里云大规模商业化实践之路_第12张图片

弹性方面,RocketMQ 5.0 商业版能够充分撬动云的计算、存储和网络的池化资源。比如在计算方面,RocketMQ 5.0 所有工作负载完全部署在 ACK 之上,充分利用了 ACK 弹性能力,撬动 ACK 弹性资源。主要依赖 ACK 的两项技术,一是弹性资源池,另一个是 HPA 支持计算能力快速弹性。同时也会在 ACK 之上做跨可用区部署以提供高可用保障。

网络层面,RocketMQ 5.0 也会充分利用阿里云网络设施,为用户提供更便捷的网络访问能力。比如 RocketMQ 5.0 实例能够支持公网随开随用,需要依赖公网做测试的时候即开即用,测试完立即关闭,安全与方便兼具。同时支持多种私网类型的网络形态,包括 Single Tunnel、Private Link,另外也基于 CEN 构建了全球互通设计网络。

存储方面,RocketMQ 5.0 商业版率先引入多级存储概念,基于 OSS 构建二级存储,能够充分利用 OSS 存储的弹性能力,存储计费也转向了按量付费。而用户能够在 RocketMQ 之上自定义消息存储时长,比如将消息从 3 天有效时长延长至 30 天,能够真正将消息变为数据资产。同时利用二级存储能力,将冷热数据分离,为用户提供一致的冷读 SLA 。

RocketMQ 5.0 商业版发布预告

RocketMQ 4.0 历经了五年发展,开源和商业版本共同迈入了 5.0 时代。7 月底,阿里云消息队列将会基于开源版发布全新的 5.0 商业化版本。注:截止发稿前,RocketMQ 5.0 已经在阿里云消息队列 RocketMQ 产品上全新发布,目前支持国内主要地域。

Apache RocketMQ 在阿里云大规模商业化实践之路_第13张图片

RocketMQ 5.0 版相对于 4.0 版实例主要有以下几大改变:

第一,新版本、新售卖,更便宜。新版本采取了全新计量方式,有包年、包月型,也有按量付费和公网流量弹性计费。也有更全的售卖体系,比如新增专业版实例,能够满足部分用户需求。同时每个商品系列都新增了测试环境专用实例,能够方便用户以低成本的方式搭建自己的开发环境。

第二,更强弹性,降本提效利器。存储完全走向弹性,能够通过 Serverless 按需使用,按量付费。预留弹性,实例基础规格支持实时升降配,用户可以很方便地在流量到来之前做弹性。此外,专业版支持突发流量弹性,能够解决线上稳定性风险。

第三,全新架构,增强可观测运维。无状态消息消费模型能够解决一些老版本的痛点。同时在可观测上全面采取了云原生接入栈。

消息的全新形态:事件总线 EventBridge

事件总线 EventBridge 已经开源到 RocketMQ 社区中。云原生时代,事件无处不在,云计算资源散落在各地,各类生态孤岛随处可见。因此,以事件和事件驱动的方式来集成这一切是大势所趋。

基于此,阿里云推出了全新事件型产品 EventBridge。该产品构建在 RocketMQ 之上,是 RocketMQ 之上的一个事件驱动架构实践。

Apache RocketMQ 在阿里云大规模商业化实践之路_第14张图片

EventBridge 的事件源包括阿里云服务的管控事件比如资源变更事件、审计事件、配置变更事件,阿里云服务的数据事件,也包括自定义应用、SaaS 应用、自建数据平台、其他云厂商服务等。

事件经过 EventBridge 处理后会投递到事件目标,事件目标包括函数计算、消息服务、自建网关、HTTP(S)、短信、邮箱、钉钉等。

事件源到事件目标之间会经历完整的事件处理,包括事件源接入到 EB 后,可以对事件进行过滤、转换、归档、回放等。事件在 EventBridge 整个流程中也有完善的可观测性设计,包括事件查询、链路追踪。事件的接入方式非常丰富,可以通过 OpenAPI 来接入、7 种多语言 SDK、CloudEvents SDK、Web Console 和 Webhook 。

EventBridge 具有如下特点:

  • 能够大幅度减少用户开发成本,用户无需额外开发,通过创建 EventBridge 源、事件目标、事件规则等资源即可实现事件架构。用户可以编写事件规则,对事件做过滤、转换。

  • 提供原生 CloudEvents 支持,拥抱 CNCF 社区,能够无缝对接社区 SDK 。标准协议也能统一个阿里云事件规范。

  • 事件 Schema 支持:能够支持事件 Schema 自动探测和校验,支持 Source 和 Target 的 Schema 绑定。

  • 全球事件任意互通:组建了全球事件任意互通网络,组件了跨地域、跨账户的事件网络,能够支持跨云、跨数据中心的事件路由。

Apache RocketMQ 在阿里云大规模商业化实践之路_第15张图片

EventBridge在云上生态已经初具规模,已经集成了 255+ 云产品事件源和 1000+ 事件类型。

EventBridge率先对消息生态做了融合。阿里云的消息产品矩阵生态均通过 EventBridge 做了完全融合。任何一款消息产品与另一款消息产品的数据都能互通。同时,依靠 EventBridge 的全球事件网络,能够为所有消息产品赋予全球消息路由的能力。

EventBridge 目前已经在内部接入钉钉 ISV、聚石塔 ISV,外部也有 50+ SaaS 系统可以通过 Webhook 的方式接入。另外,海量事件源可以触达 10 多种事件目标,已经对接了全系云产品 API ,任何事件都可以驱动全量云产品 API。

加入 Apache RocketMQ 社区

十年铸剑,Apache RocketMQ 的成长离不开全球接近 500 位开发者的积极参与贡献,相信在下个版本你就是 Apache RocketMQ 的贡献者,在社区不仅可以结识社区大牛,提升技术水平,也可以提升个人影响力,促进自身成长。感兴趣的同学可以加入钉钉群与 RocketMQ 爱好者一起广泛讨论:

Apache RocketMQ 在阿里云大规模商业化实践之路_第16张图片

钉钉扫码加群

作者介绍:
周新宇 - Apache Member,Apache RocketMQ PMC Member,阿里云消息队列 RocketMQ 研发负责人。

点击此处,进入官网了解更多详情~

你可能感兴趣的:(java-rocketmq,apache,rocketmq)