#include
#include
#include
using namespace std;
using namespace cv;
int main()
{
//单位转换
int dot_per_inch = 96; //根据自己的电脑设置,DPI:每英寸的像素点数
double cm_to_inch = 0.3937; //1cm=0.3937inch
double inch_to_cm = 2.54; //1inch = 2.54cm
double inch_per_dot = 1.0 / 96.0;
//自定义标定板
double blockSize_cm = 1.5; //方格尺寸:边长1.5cm的正方形
//设置横列方框数目
int blockcol = 10;
int blockrow = 8;
int blockSize = (int)(blockSize_cm / inch_to_cm * dot_per_inch);
cout << blockSize << endl;
//int imageSize = blockSize * blockNum;
int imagesizecol = blockSize * blockrow;
int imagesizerow = blockSize * blockcol;
Mat chessBoard(imagesizecol, imagesizerow, CV_8UC3, Scalar::all(0));
unsigned char color = 0;
for (int i = 0; i < imagesizerow; i = i + blockSize) {
color = ~color;
for (int j = 0; j < imagesizecol; j = j + blockSize) {
Mat ROI = chessBoard(Rect(i, j, blockSize, blockSize));
ROI.setTo(Scalar::all(color));
color = ~color;
}
}
imshow("Chess board", chessBoard);
imwrite("chessBoard.jpg", chessBoard);
waitKey(0);
return 0;
}
运行上述程序后会生成一个大小是10×8的,角点数是9×7的标定板,将其打印,为后续做标定准备。
PS:关于标定板的大小,依据自己拍摄的实际大小为准。
(本文中选用的标定板大小是10×8的,角点数是9×7的。)
Size board_size = Size(9, 7); /* 标定板上每行、列的角点数 */
#include
#include
#include
#include "opencv2/opencv.hpp"
#include
using namespace cv;
using namespace std;
void LoadImages_TXT(string filename, vector<string>& imageNames)
{
// step 1 : open file
ifstream file(filename);
if (!file)
{
cout << "Wrong! File " << filename << " dose not exist!" << endl;
return;
}
// step 2 : load data
imageNames.clear();
while (!file.eof())
{
string imageName;
file >> imageName;
if (file.eof())
break;
imageNames.push_back(imageName);
cout << "Load Image, imageName: " << imageName << endl;
}
file.close();
return;
}
int main()
{
std::ofstream fout("caliberation_result.txt"); /* 保存标定结果的文件 */
//读取每一幅图像,从中提取出角点,然后对角点进行亚像素精确化
std::cout << "开始提取角点………………\n";
int image_count = 0; /* 图像数量 */
Size image_size; /* 图像的尺寸 */
Size board_size = Size(9, 7); /* 标定板上每行、列的角点数 */
vector<Point2f> image_points_buf; /* 缓存每幅图像上检测到的角点 */
vector<vector<Point2f>> image_points_seq; /* 保存检测到的所有角点 */
string filename;
int count = -1;//用于存储角点个数。
string dataFileName = "calibdata.txt"; /* 标定所用图像文件的路径 */
vector<string> imageNames;
LoadImages_TXT(dataFileName, imageNames);
for (int i = 0; i < imageNames.size(); i++)
{
image_count++;
// 用于观察检验输出
cout << "image_count = " << image_count << endl;
/* 输出检验*/
cout << "-->count = " << count << endl;
string imageName = imageNames[i];
Mat imageInput = imread(imageName);
imshow("Camera Calibration", imageInput);//显示图片
waitKey(100);//暂停0.1S
if (image_count == 1) //读入第一张图片时获取图像宽高信息
{
image_size.width = imageInput.cols;
image_size.height = imageInput.rows;
cout << "image_size.width = " << image_size.width << endl;
cout << "image_size.height = " << image_size.height << endl;
}
/* 提取角点 */
if (0 == findChessboardCorners(imageInput, board_size, image_points_buf))
{
cout << "can not find chessboard corners(找不到角点)!\n"; //找不到角点
//exit(1) ;
}
else
{
Mat view_gray;
cvtColor(imageInput, view_gray, CV_RGB2GRAY);
/* 亚像素精确化 */
find4QuadCornerSubpix(view_gray, image_points_buf, Size(5, 5)); //对粗提取的角点进行精确化
image_points_seq.push_back(image_points_buf); //尾插,保存亚像素角点
/* 在图像上显示角点位置 */
//drawChessboardCorners(view_gray,board_size,image_points_buf,true); //用于在图片中标记角点
drawChessboardCorners(imageInput, board_size, image_points_buf, true); //用于在图片中标记角点
imshow("Camera Calibration", imageInput);//显示图片
imwrite("Calibration" + to_string(image_count) + ".png", imageInput);//显示图片
waitKey(100);//暂停0.1S
}
}
int total = image_points_seq.size();
cout << "total = " << total << endl;
int CornerNum = board_size.width * board_size.height; //每张图片上总的角点数
for (int ii = 0; ii < total; ii++)
{
if (0 == ii % CornerNum)// 24 是每幅图片的角点个数。此判断语句是为了输出 图片号,便于控制台观看
{
int i = -1;
i = ii / CornerNum;
int j = i + 1;
cout << "--> 第 " << j << "图片的数据 --> : " << endl;
}
if (0 == ii % 3) // 此判断语句,格式化输出,便于控制台查看(3个图片信息显示一行)
{
cout << endl;
}
else
{
cout.width(10);
}
//输出所有的角点
cout << " -->" << image_points_seq[ii][0].x;
cout << " -->" << image_points_seq[ii][0].y;
}
cout << "角点提取完成!\n";
//
// step 2 : 2D calibration
//
//以下是摄像机标定
cout << "开始标定………………" << endl;
/*棋盘三维信息*/
Size square_size = Size(5, 5); /* 实际测量得到的标定板上每个棋盘格的大小 */
cout << "!!!!!!!!!!!!!!!!!!!!!!!1" << endl;
cout << square_size.height << endl;
cout << square_size.width << endl;
vector<vector<Point3f>> object_points; /* 保存不同图片标定板上角点的三维坐标 */
/*内外参数*/
Mat cameraMatrix = Mat(3, 3, CV_32FC1, Scalar::all(0)); /* 摄像机内参数矩阵 */
vector<int> point_counts; // 每幅图像中角点的数量
Mat distCoeffs = Mat(1, 5, CV_32FC1, Scalar::all(0)); /* 摄像机的5个畸变系数:k1,k2,p1,p2,k3 */
vector<Mat> tvecsMat; /* 每幅图像的平移向量 */
vector<Mat> rvecsMat; /* 每幅图像的旋转向量 */
/* 初始化标定板上角点的三维坐标 */
int i, j, t;
for (t = 0; t < image_count; t++) //图片个数
{
vector<Point3f> tempPointSet;
for (i = 0; i < board_size.height; i++)
{
for (j = 0; j < board_size.width; j++)
{
Point3f realPoint;
/* 假设标定板放在世界坐标系中z=0的平面上 */
realPoint.x = i * square_size.height;
realPoint.y = j * square_size.width;
realPoint.z = 0;
tempPointSet.push_back(realPoint);
}
}
object_points.push_back(tempPointSet);
}
/* 初始化每幅图像中的角点数量,假定每幅图像中都可以看到完整的标定板 */
for (i = 0; i < image_count; i++)
{
point_counts.push_back(board_size.width * board_size.height);
}
/* 开始标定 */
calibrateCamera(object_points, image_points_seq, image_size, cameraMatrix, distCoeffs, rvecsMat, tvecsMat, 0);
//cout<
cout << "标定完成!\n";
//对标定结果进行评价
cout << "开始评价标定结果………………\n";
double total_err = 0.0; /* 所有图像的平均误差的总和 */
double err = 0.0; /* 每幅图像的平均误差 */
vector<Point2f> image_points2; /* 保存重新计算得到的投影点 */
cout << "\t每幅图像的标定误差:\n";
fout << "每幅图像的标定误差:\n";
for (i = 0; i < image_count; i++)
{
vector<Point3f> tempPointSet = object_points[i];
/* 通过得到的摄像机内外参数,对空间的三维点进行重新投影计算,得到新的二维投影点 */
projectPoints(tempPointSet, rvecsMat[i], tvecsMat[i], cameraMatrix, distCoeffs, image_points2);
/* 计算新的投影点和旧的投影点之间的误差*/
vector<Point2f> tempImagePoint = image_points_seq[i]; //原先的旧二维点
Mat tempImagePointMat = Mat(1, tempImagePoint.size(), CV_32FC2);
Mat image_points2Mat = Mat(1, image_points2.size(), CV_32FC2); //32位浮点型2通道
for (int j = 0; j < tempImagePoint.size(); j++) //j对应二维点的个数
{
image_points2Mat.at<Vec2f>(0, j) = Vec2f(image_points2[j].x, image_points2[j].y);
tempImagePointMat.at<Vec2f>(0, j) = Vec2f(tempImagePoint[j].x, tempImagePoint[j].y);
}
err = norm(image_points2Mat, tempImagePointMat, NORM_L2);
total_err += err /= point_counts[i];
std::cout << "第" << i + 1 << "幅图像的平均误差:" << err << "像素" << endl;
fout << "第" << i + 1 << "幅图像的平均误差:" << err << "像素" << endl;
}
std::cout << "总体平均误差:" << total_err / image_count << "像素" << endl;
fout << "总体平均误差:" << total_err / image_count << "像素" << endl << endl;
std::cout << "评价完成!" << endl;
//保存定标结果
std::cout << "开始保存定标结果………………" << endl;
Mat rotation_matrix = Mat(3, 3, CV_32FC1, Scalar::all(0)); /* 保存每幅图像的旋转矩阵 */
fout << "相机内参数矩阵:" << endl;
fout << cameraMatrix << endl << endl;
fout << "畸变系数:\n";
fout << distCoeffs << endl;
for (int i = 0; i < image_count; i++)
{
fout << "第" << i + 1 << "幅图像的旋转向量:" << endl;
fout << rvecsMat[i] << endl;
/* 将旋转向量转换为相对应的旋转矩阵 */
Rodrigues(rvecsMat[i], rotation_matrix);
fout << "第" << i + 1 << "幅图像的旋转矩阵:" << endl;
fout << rotation_matrix << endl;
fout << "第" << i + 1 << "幅图像的平移向量:" << endl;
fout << tvecsMat[i] << endl << endl;
}
std::cout << "完成保存" << endl;
fout << endl;
}
我这里用了二十几张标定图片,运行时间长一点,静静等待…
之后会在工程目录中生成caliberation_result.txt标定结果和相关图片。