选择数据集:
1 SST (Daily Sea Surface Temperature)
NOAA High-resolution Blended Analysis
使用编程工具:
主要使用函数:
内容:
具体过程:
过程还是比较清晰的,直接附上结果,
ps(标题时间打错了、横轴的label也搞错了,懒得重画了,代码中应该没问题了)
:
SST和OLR的pattern还是比较容易理解的,这两者的相关的空间分布,属实有点没看懂。
最好,还是附上完整的代码吧,也没啥好保留的:
# -*- coding: utf-8 -*-
"""
Created on Sat Oct 22 20:50:09 2022
@author: Administrator
"""
import cartopy.feature as cfeature
import numpy as np
import xarray as xr
from cartopy.mpl.ticker import LongitudeFormatter,LatitudeFormatter
import cmaps
import matplotlib.pyplot as plt
import cartopy.crs as ccrs
import matplotlib.ticker as mticker
from cartopy.mpl.gridliner import LONGITUDE_FORMATTER, LATITUDE_FORMATTER
from scipy import stats
###############################################################################
olr_path = r'J:/olr.day.mean.nc'
sst_path = r'J:/sst.intep.nc'
da1 = xr.open_dataset(sst_path).sortby('lat')
da2 = xr.open_dataset(olr_path).sortby('lat')
sst = da1.sst.sel(lat=slice(-30,30),lon=slice(100,200))
olr = da2.olr.sel(lat=slice(-30,30),lon=slice(100,200),
time=slice('2010','2010'))
############### calculate ################################################
trend = np.zeros((sst.lat.shape[0],sst.lon.shape[0]))
p_value = np.zeros((sst.lat.shape[0],sst.lon.shape[0]))
for i in range (0,sst.lat.shape[0]):
for j in range (0,sst.lon.shape[0]):
trend[i,j], intercept, r_value, p_value[i,j], std_err=stats.linregress(np.arange(1,366),sst[:,i,j])
##############################################################################
################ plot #######################################################
lon = sst.lon.data
lat = sst.lat.data
##############################################################################
box = [100,200,-20,20]
xstep,ystep = 20,10
proj = ccrs.PlateCarree(central_longitude=180)
plt.rcParams['font.family'] = 'Times New Roman',
##############################################################################
fig = plt.figure(figsize=(8,7),dpi=200)
fig.tight_layout()
ax = fig.add_axes([0.1,0.2,0.8,0.7],projection = proj)
ax.set_extent(box,crs=ccrs.PlateCarree())
ax.coastlines('50m')
ax.set_xticks(np.arange(box[0],box[1]+xstep, xstep),crs=ccrs.PlateCarree())
ax.set_yticks(np.arange(box[2], box[3]+1, ystep),crs=ccrs.PlateCarree())
lon_formatter = LongitudeFormatter(zero_direction_label=False)#True/False
lat_formatter = LatitudeFormatter()
ax.xaxis.set_major_formatter(lon_formatter)
ax.yaxis.set_major_formatter(lat_formatter)
ax.spines[['right','left','top','bottom']].set_linewidth(1.1)
ax.spines[['right','left','top','bottom']].set_visible(True)
ax.set_xlabel('Lon',fontsize=14)
ax.set_title('Significance Test',fontsize=16,pad=8,loc='right')
ax.set_title('this is title',fontsize=16,pad=8,loc='left')
ax.tick_params( which='both',direction='in',
width=0.7,
pad=5,
labelsize=14,
bottom=True, left=True, right=True, top=True)
c = ax.contourf(lon,lat,trend,
# levels=np.linspace(-0.008,0.008,17),
# levels=np.linspace(-0.32,0.32,17),
#levels=np.linspace(-0.012,0.012,17),
extend = 'both',
transform=ccrs.PlateCarree(),
cmap=cmaps.BlueWhiteOrangeRed)
c1b = ax.contourf(lon,lat, p_value,
[np.nanmin(p_value),0.05,np.nanmax(p_value)],
hatches=['.', None],
colors="none",
transform=ccrs.PlateCarree())
cb=plt.colorbar(c,
shrink=0.85,
pad=0.15,
orientation='horizontal',
aspect=25,
)
cb.ax.tick_params(labelsize=10,which='both',direction='in',)
plt.show()
# save picture
# fig.savefig(r'D:\SST_OLR.png',format='png',dpi=500)
##############################################################################
# xtick = np.arange(100, 200, 20)
# ytick = np.arange(-30,31, 10)
# gl=ax.gridlines(crs=ccrs.PlateCarree(), draw_labels=True,
# xlocs=[120,140,160,180,],
# ylocs=[-30,-20,-10,0,10,20,30,],
# x_inline=False,
# y_inline=False,
# linewidth=1.5, color='gray', alpha=0.5, linestyle='--',
# )
# gl.xlabels_top = False
# gl.ylabels_right = False
# gl.xlines = True
# plt.xlabel('Lon',fontsize=15)
# plt.ylabel('Lat',fontsize=15)
# gl.xformatter = LONGITUDE_FORMATTER
# gl.yformatter = LATITUDE_FORMATTER