我们需要使用pip
来引入Python的第三方模块,pip
是Python包管理工具,该工具提供了对Python包的查找、下载、安装与卸载等功能。
(1)更新pip
:
打开VS Code后在命令行终端进行操作,本文中假设Python的安装路径为D:\Python3.10
。
D:\Python3.10\python.exe -m pip install --upgrade pip
(2)安装numpy
:
Numpy库支持数组、矩阵等运算,也是OpenCV所需要的模块之一。
pip install numpy
(3)安装matplotlib
:
Matplotlib库在显示图像,绘制图表方面很方便,建议大家安装一下。
pip install matplotlib
(4)安装pandas
:
Pandas库依赖于Numpy库,是一个开放源码、BSD 许可的库,提供高性能、易于使用的数据结构和数据分析工具。
pip install pandas
(5)安装opencv-python
:
OpenCV-Python是一个Python绑定库,旨在解决计算机视觉问题。
pip install opencv-python
能够成功运行以下代码表示安装成功:
import cv2
# 读一个图片并进行显示(图片路径需自己指定)
lena=cv2.imread("D:\\VS Code Projects\\Python\\1.jpg")
cv2.imshow("image",lena)
cv2.waitKey(0)
如果遇到AttributeError: module 'cv2' has no attribute 'quality'
之类的报错可以将opencv-python
卸了安装opencv-contrib-python
:
pip uninstall opencv-python
pip install opencv-contrib-python
(6)安装scipy
:
Scipy是一个用于数学、科学、工程领域的常用软件包,可以处理插值、积分、优化、图像处理、常微分方程数值解的求解、信号处理等问题。它用于有效计算Numpy矩阵,使Numpy和Scipy协同工作,高效解决问题。
pip install scipy
(7)安装scikit-learn
:
Scikit-Learn是一个开源的机器学习库,它支持有监督和无监督的学习。它还提供了用于模型拟合,数据预处理,模型选择和评估以及许多其他实用程序的各种工具。
注意:安装scikit-learn
之前需要先安装numpy
和scipy
。
pip install scikit-learn
能够成功运行以下代码表示安装成功:
import numpy as np
import matplotlib.pyplot as plt
from sklearn.datasets import make_blobs
from sklearn.discriminant_analysis import LinearDiscriminantAnalysis
n_train = 20 # samples for training
n_test = 200 # samples for testing
n_averages = 50 # how often to repeat classification
n_features_max = 75 # maximum number of features
step = 4 # step size for the calculation
def generate_data(n_samples, n_features):
"""Generate random blob-ish data with noisy features.
This returns an array of input data with shape `(n_samples, n_features)`
and an array of `n_samples` target labels.
Only one feature contains discriminative information, the other features
contain only noise.
"""
X, y = make_blobs(n_samples=n_samples, n_features=1, centers=[[-2], [2]])
# add non-discriminative features
if n_features > 1:
X = np.hstack([X, np.random.randn(n_samples, n_features - 1)])
return X, y
acc_clf1, acc_clf2 = [], []
n_features_range = range(1, n_features_max + 1, step)
for n_features in n_features_range:
score_clf1, score_clf2 = 0, 0
for _ in range(n_averages):
X, y = generate_data(n_train, n_features)
clf1 = LinearDiscriminantAnalysis(solver='lsqr', shrinkage='auto').fit(X, y)
clf2 = LinearDiscriminantAnalysis(solver='lsqr', shrinkage=None).fit(X, y)
X, y = generate_data(n_test, n_features)
score_clf1 += clf1.score(X, y)
score_clf2 += clf2.score(X, y)
acc_clf1.append(score_clf1 / n_averages)
acc_clf2.append(score_clf2 / n_averages)
features_samples_ratio = np.array(n_features_range) / n_train
plt.plot(features_samples_ratio, acc_clf1, linewidth=2,
label="Linear Discriminant Analysis with shrinkage", color='navy')
plt.plot(features_samples_ratio, acc_clf2, linewidth=2,
label="Linear Discriminant Analysis", color='gold')
plt.xlabel('n_features / n_samples')
plt.ylabel('Classification accuracy')
plt.legend(loc=1, prop={'size': 12})
plt.suptitle('Linear Discriminant Analysis vs. \
shrinkage Linear Discriminant Analysis (1 discriminative feature)')
plt.show()
(8)查看目前已安装的库:
pip list
(9)更新已安装的库:
pip install --upgrade numpy