人工智能前沿——深度学习热门领域(确定选题及研究方向)

近年来,人工智能发展迅猛,其主要动力来自深度学习。深度学习的炙手可热源自于它对人工智能技术发展的整体促进和在广泛应用场景中的巨大应用价值。毫无疑问,深度学习仍旧是当今时代人工智能前沿技术的核心。

人工智能前沿——深度学习热门领域(确定选题及研究方向)_第1张图片

目录

一、计算机视觉(CV)

1.图像分类

2.目标检测

3.目标分割

二、自然语言处理(NLP)

1.文本分类

2.生成式任务

3.语音识别


一、计算机视觉(CV)

计算机视觉(Computer vision,缩写作 CV)是人工智能(AI) 的一个重要应用领域,它是一门研究如何使机器“看”的科学,更进一步的说,就是是指用摄影机和电脑代替人眼对目标进行识别、跟踪和测量等机器视觉,并进一步做图形处理,使电脑处理成为更适合人眼观察或传送给仪器检测的图像。作为一个科学学科,计算机视觉研究相关的理论和技术,试图建立能够从图像或者多维数据中获取‘信息’的人工智能系统。这里所指的信息指Shannon定义的,可以用来帮助做一个“决定”的信息。因为感知可以看作是从感官信号中提 取信息,所以计算机视觉也可以看作是研究如何使人工系统从图像或多维数据中“感知”的科学。目前主要有以下几大基础任务。

1.图像分类

图像分类,根据各自在图像信息中所反映的不同特征,把不同类别的目标区分开来的图像处理方法。它利用计算机对图像进行定量分析,把图像或图像中的每个像元或区域划归为若干个类别中的某一种,以代替人的视觉判读。

人工智能前沿——深度学习热门领域(确定选题及研究方向)_第2张图片

2.目标检测

目标检测,也叫目标提取,是一种基于目标几何和统计特征的图像分割。它将目标的分割和识别合二为一,其准确性和实时性是整个系统的一项重要能力。它将目标的分割和识别合二为一,其准确性和实时性是整个系统的一项重要能力。尤其是在复杂场景中,需要对多个目标进行实时处理时,目标自动提取和识别就显得特别重要。

随着计算机技术的发展和计算机视觉原理的广泛应用,利用计算机图像处理技术对目标进行实时跟踪研究越来越热门,对目标进行动态实时跟踪定位在智能化交通系统、智能监控系统、军事目标检测及医学导航手术中手术器械定位等方面具有广泛的应用价值。

查看源图像

3.目标分割

目标分割是检测到图像中的所有目标,分为语义分割(Semantic-level)和实例分割(Instance-level),解决“每一个像素属于哪个目标物或场景”的问题,属于像素级的,需要给出属于每一类的所有像素点,而不是矩形框。

人工智能前沿——深度学习热门领域(确定选题及研究方向)_第3张图片

二、自然语言处理(NLP)

自然语言处理( Natural Language Processing, NLP)是计算机科学领域与人工智能领域中的一个重要方向。它研究能实现人与计算机之间用自然语言进行有效通信的各种理论和方法。自然语言处理是一门融语言学、计算机科学、数学于一体的科学。因此,这一领域的研究将涉及自然语言,即人们日常使用的语言,所以它与语言学的研究有着密切的联系,但又有重要的区别。自然语言处理并不是一般地研究自然语言,而在于研制能有效地实现自然语言通信的计算机系统,特别是其中的软件系统。因而它是计算机科学的一部分。

自然语言处理主要应用于机器翻译、舆情监测、自动摘要、观点提取、文本分类、问题回答、文本语义对比、语音识别、中文OCR等方面。

1.文本分类

文本分类用电脑对文本集(或其他实体或物件)按照一定的分类体系或标准进行自动分类标记。 它根据一个已经被标注的训练文档集合, 找到文档特征和文档类别之间的关系模型, 然后利用这种学习得到的关系模型对 新的文档进行类别判断 。文本分类从基于知识的方法逐渐转变为基于统计 和机器学习的方法。

如情感分类:尝试分析作者对于某种产品或者一些其他事情的情感,经常用于评论领域,例如:影评、购物点评、产品测评等。如主题分类:关于试图理解给定文档的主题是什么,例如:我们可能想知道一篇给定的文章是关于体育的还是国际新闻的。

人工智能前沿——深度学习热门领域(确定选题及研究方向)_第4张图片

2.生成式任务

生成式任务就是根据一段文本,生成另一段文本。

如机器翻译:百度、谷歌机器翻译。

如文本摘要:自动为论文、文章、新闻稿生成摘要。

如对话系统:输入的是一句话,输出是对这句话的回答。

如问答系统:针对用户提出的问题,系统给出相应的准确答案。

3.语音识别

语音识别是一门交叉学科。近二十年来,语音识别技术取得显著进步,开始从实验室走向市场。人们预计,未来10年内,语音识别技术将进入工业、家电、通信、汽车电子、医疗、家庭服务、消费电子产品等各个领域。 语音识别听写机在一些领域的应用被美国新闻界评为1997年计算机发展十件大事之一。很多专家都认为语音识别技术是2000年至2010年间信息技术领域十大重要的科技发展技术之一。 语音识别技术所涉及的领域包括:信号处理、模式识别、概率论和信息论、发声机理和听觉机理、人工智能等等。

人工智能前沿——深度学习热门领域(确定选题及研究方向)_第5张图片

YOLO算法改进可关注并留言博主的CSDN

>>>>>>一起交流!互相学习!共同进步!<<<<<<

你可能感兴趣的:(人工智能前沿,YOLOv7改进,YOLOv5改进,人工智能,深度学习,计算机视觉,python)