最小覆盖圆(附完整代码)

文章目录

  • 一、问题描述
  • 二.MATLAB代码
  • 三.LUA代码
  • 四.C++代码
  • 五.参考博文

一、问题描述

  给定平面 n n n个点,计算最小覆盖圆,使得所有给定点均在圆周以内(包括在圆周上)。博主commonc详细给出了最小覆盖圆算法步骤、算法时间复杂度及其证明、空间复杂度。博主Howe_Young书写的代码简洁、形式优雅,本文在其代码上做了小修改:(1)通过判断距离的平方而非距离,来判断点是否在圆内,从而避免平方根运算,有效提升计算速度 (2)尽量采用乘法代替除法,提升计算速度。下面是改进后的最小覆盖圆算法的MATLAB、LUA、C++完整代码。
  2个点示例:

最小覆盖圆(附完整代码)_第1张图片

  3个点示例:

最小覆盖圆(附完整代码)_第2张图片

  10个点示例:

最小覆盖圆(附完整代码)_第3张图片

  100个点示例:

最小覆盖圆(附完整代码)_第4张图片

二.MATLAB代码

%{
Function: get_sign
Description: 求实数x的符号
Input: 实数x
Output: 实数x的符号y
Author: Marc Pony(marc_pony@163.com)
%}
function y = get_sign(x)
if abs(x) < 1.0e-8
    y = 0;
else
    if x < 0.0
        y = -1;
    else
        y = 1;
    end
end
end
%{
Function: get_distance_square
Description: 求平面两点之间距离的平方
Input: 平面两点a,b
Output: 平面两点之间距离的平方
Author: Marc Pony(marc_pony@163.com)
%}
function distanceSquare = get_distance_square(a, b)
distanceSquare = (a(1) - b(1))^2 + (a(2) - b(2))^2;
end
%{
Function: get_circle_center
Description: 求三角形外接圆的圆心
Input: 平面三个点a,b,c
Output: 三角形外接圆的圆心center
Author: Marc Pony(marc_pony@163.com)
%}
function center = get_circle_center(a, b, c)
center = zeros(2, 1);
a1 = b(1) - a(1);
b1 = b(2) - a(2);
c1 = 0.5 * (a1 * a1 + b1 * b1);
a2 = c(1) - a(1);
b2 = c(2) - a(2);
c2 = 0.5 * (a2 * a2 + b2 * b2);
d = a1 * b2 - a2 * b1;
center(1) = a(1) + (c1 * b2 - c2 * b1) / d;
center(2) = a(2) + (a1 * c2 - a2 * c1) / d;
end
%{
Function: min_cover_circle
Description: 求平面pointCount个点的最小覆盖圆
Input: 平面pointCount个点的坐标(x,y),点个数pointCount
Output: 平面pointCount个点的最小覆盖圆圆心center,半径radius
Author: Marc Pony(marc_pony@163.com)
%}
function [center, radius] = min_cover_circle(x, y, pointCount)
p = [x(:)'; y(:)'];
p = p(:, randperm(pointCount)); %随机打乱数据
center = p(:, 1);
radiusSquare = 0.0;
for i = 2 : pointCount
    if get_sign(get_distance_square(p(:, i), center) - radiusSquare) > 0
        center = p(:, i);
        radiusSquare = 0.0;
        for j = 1 : i
            if get_sign(get_distance_square(p(:, j), center) - radiusSquare) > 0
                center = 0.5 * (p(:, i) + p(:, j));
                radiusSquare = get_distance_square(p(:, j), center);
                for k = 1 : j
                    if get_sign(get_distance_square(p(:, k), center) - radiusSquare) > 0
                        center = get_circle_center(p(:, i), p(:, j), p(:, k));
                        radiusSquare = get_distance_square(p(:, i), center);
                    end
                end
            end
        end
    end
end
radius = sqrt(radiusSquare);
end
%{
Function: draw_circle
Description: 画圆周
Input: 圆心center,圆周半径radius,线型/颜色等设置参数options
Output: 无
Author: Marc Pony(marc_pony@163.com)
%}
function draw_circle(center, radius, options)
theta = 0.0 : 0.001 : 2.0 * pi;
x = center(1) + radius * cos(theta);
y = center(2) + radius * sin(theta);
plot(x, y, options)
end
clc
clear
close all
for pointCount = [1, 2, 3, 10, 100]
    x = randi([-100, 100], pointCount, 1);
    y = randi([-100, 100], pointCount, 1);
    [center, radius] = min_cover_circle(x, y, pointCount);
    figure('color', 'w')
    draw_circle(center, radius, 'k--')
    hold on
    plot(x, y, 'r+')
    axis equal off
end

三.LUA代码

--[[-----------------------
Function: get_sign
Description: 求实数x的符号
Input: 实数x
Output: 实数x的符号
Author: Marc Pony([email protected])
--]]------------------------
function get_sign(x)
    if math.abs(x) < 1.0e-8 then
        return 0
	else
		if x < 0.0 then
			return -1
		else
			return 1
		end
	end	
end


--[[-----------------------
Function: get_distance_square
Description: 求平面两点之间距离的平方
Input: 平面两点a,b
Output: 平面两点之间距离的平方
Author: Marc Pony([email protected])
--]]------------------------
function get_distance_square(a, b)
    return (a[1] - b[1])^2 + (a[2] - b[2])^2
end


--[[-----------------------
Function: get_circle_center
Description: 求三角形外接圆的圆心
Input: 平面三个点a,b,c
Output: 三角形外接圆的圆心center
Author: Marc Pony([email protected])
--]]------------------------
function get_circle_center(a, b, c)
    local center = {}
    local a1 = b[1] - a[1]
    local b1 = b[2] - a[2]
    local c1 = 0.5 * (a1 * a1 + b1 * b1)
    local a2 = c[1] - a[1]
    local b2 = c[2] - a[2]
    local c2 = 0.5 * (a2 * a2 + b2 * b2)
    local d = a1 * b2 - a2 * b1
	
    center[1] = a[1] + (c1 * b2 - c2 * b1) / d
    center[2] = a[2] + (a1 * c2 - a2 * c1) / d
    return center
end

--[[-----------------------
Function: get_random_array
Description: 将数组随机排列
Input: 数组array,数组起始索引startIndex,结束索引endIndex
Output: 随机排列后数组randomArray
Author: Marc Pony([email protected])
--]]------------------------
function get_random_array(array, startIndex, endIndex)
	local i, index, length
    local randomArray = {}
	
	math.randomseed(tostring(os.time()) : reverse() : sub(1, 7))    --设置时间种子
	length = endIndex - startIndex + 1
	for i = 1, endIndex - startIndex + 1 do
		index = math.floor(startIndex + (endIndex - startIndex + 1 - i) * math.random() + 0.5)     --执行round功能
		randomArray[length] = array[index]
		array[index] = array[length]
		length = length - 1
	end
    return randomArray
end

--[[-----------------------
Function: min_cover_circle
Description: 求平面pointCount个点的最小覆盖圆
Input: 平面pointCount个点的坐标(x,y),点个数pointCount
Output: 平面pointCount个点的最小覆盖圆圆心center,半径radius
Author: Marc Pony([email protected])
--]]------------------------
function min_cover_circle(x, y, pointCount)
	local i, j, k, radius, radiusSquare
	local center = {}
	local p_i = {}
	local p_j = {}
	local p_k = {}
	local xx = {}
	local yy = {}
	local array = {}
	local randomArray = {}
	
	--将坐标随机排列
	for i = 1, pointCount do
		array[i] = i
		xx[i] = x[i]
		yy[i] = y[i]
	end
	randomArray = get_random_array(array, 1, pointCount)
	for i = 1, pointCount do
		x[i] = xx[randomArray[i]]
		y[i] = yy[randomArray[i]]
	end
	
	center[1] = x[1]
	center[2] = y[1]
	radiusSquare = 0.0
    for i = 2, pointCount do
		p_i[1] = x[i]
		p_i[2] = y[i]
        if get_sign(get_distance_square(p_i, center) - radiusSquare) > 0 then 
            center[1] = p_i[1]
			center[2] = p_i[2]
            radiusSquare = 0.0
            for j = 1, i do
				p_j[1] = x[j]
				p_j[2] = y[j]
                if get_sign(get_distance_square(p_j, center) - radiusSquare) > 0 then
                    center[1] = 0.5 * (p_i[1] + p_j[1])
                    center[2] = 0.5 * (p_i[2] + p_j[2])
                    radiusSquare = get_distance_square(p_j, center)
                    for k = 1, j do
						p_k[1] = x[k]
						p_k[2] = y[k]
                        if get_sign(get_distance_square(p_k, center) - radiusSquare) > 0 then
							center = get_circle_center(p_i, p_j, p_k)
                            radiusSquare = get_distance_square(p_i, center)
						end
                    end
                end
            end
        end
    end
	radius = math.sqrt(radiusSquare)
	return center, radius
end

-- Test random array
local array = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10}
local startIndex = 1
local endIndex = 10
local randomArray = get_random_array(array, startIndex, endIndex)

-- Test min cover circle
local x = {-63, 35, 35, 17, -74, 38, -97, -78, 91, -49}
local y = {91, 2, -12, -51, 74, -22, -82, -34, 56, 66}
local n = 10
local radius
local center = {}
center, radius = min_cover_circle(x,y, n)
print("min cover circle's center : (", center[1], ", ", center[2], ")")
print("min cover circle's radius : ", radius)

四.C++代码

#include 
#include 
#include 
#include 
#include 
#include 

#define MAX_POINT_COUNT 100
using namespace std;

struct point
{
	double x, y;
};

/*************************************************
Function: get_sign
Description: 求实数x的符号
Input: 实数x
Output: 无
Return: 实数x的符号(0, -1, 1)
Author: Marc Pony([email protected])
*************************************************/
int get_sign(double x)
{
	if (fabs(x) < 1.0e-8)
	{
		return 0;
	}
	else
	{
		return (x < 0) ? -1 : 1;
	}
}


/*************************************************
Function: get_distance_square
Description: 求平面两点之间距离的平方
Input: 平面两点a,b
Output: 无
Return: 平面两点之间距离的平方
Author: Marc Pony([email protected])
*************************************************/
double get_distance_square(const point a, const point b)
{
	return (a.x - b.x) * (a.x - b.x) + (a.y - b.y) * (a.y - b.y);
}


/*************************************************
Function: get_circle_center
Description: 求三角形外接圆的圆心
Input: 平面三个点a,b,c
Output: 无
Return: 三角形外接圆的圆心center
Author: Marc Pony([email protected])
*************************************************/
point get_circle_center(const point a, const point b, const point c)
{
	point center;
	double a1 = b.x - a.x;
	double b1 = b.y - a.y;
	double c1 = 0.5 * (a1 * a1 + b1 * b1);
	double a2 = c.x - a.x;
	double b2 = c.y - a.y;
	double c2 = 0.5 * (a2 * a2 + b2 * b2);
	double d = a1 * b2 - a2 * b1;

	center.x = a.x + (c1 * b2 - c2 * b1) / d;
	center.y = a.y + (a1 * c2 - a2 * c1) / d;
	return center;
}


/*************************************************
Function: min_cover_circle
Description: 求平面pointCount个点的最小覆盖圆
Input: 平面pointCount个点的数组首元素地址p,点个数pointCount
Output: 平面pointCount个点的最小覆盖圆圆心center,半径radius
Return: 无
Author: Marc Pony([email protected])
*************************************************/
void min_cover_circle(point *p, int pointCount, point &center, double &radius)//找最小覆盖圆(这里没有用全局变量p[], 因为是为了封装一个函数便于调用)
{
	double radiusSquare;

	random_shuffle(p, p + pointCount);//随机函数,使用了之后使程序更快点,也可以不用

	center = p[0];
	radiusSquare = 0.0;
	for (int i = 1; i < pointCount; i++)
	{
		if (get_sign(get_distance_square(p[i], center) - radiusSquare) > 0)//如果p[i]在当前圆的外面, 那么以当前点为圆心开始找
		{
			center = p[i];//圆心为当前点
			radiusSquare = 0.0;//这时候这个圆只包括他自己.所以半径为0
			for (int j = 0; j < i; j++)//找它之前的所有点
			{
				if (get_sign(get_distance_square(p[j], center) - radiusSquare) > 0)//如果之前的点有不满足的, 那么就是以这两点为直径的圆
				{
					center.x = 0.5 * (p[i].x + p[j].x);
					center.y = 0.5 * (p[i].y + p[j].y);
					radiusSquare = get_distance_square(p[j], center);
					for (int k = 0; k < j; k++)
					{
						if (get_sign(get_distance_square(p[k], center) - radiusSquare) > 0)//找新作出来的圆之前的点是否还有不满足的, 如果不满足一定就是三个点都在圆上了
						{
							center = get_circle_center(p[i], p[j], p[k]);
							radiusSquare = get_distance_square(p[i], center);
						}
					}
				}
			}
		}
	}
	radius = sqrt(radiusSquare);
}

int main()
{
	#define POINT_COUNT 10
	point p[MAX_POINT_COUNT], center;
	double radius;
	double x[POINT_COUNT] = { -63, 35, 35, 17, -74, 38, -97, -78, 91, -49 };
	double y[POINT_COUNT] = { 91, 2, -12, -51, 74, -22, -82, -34, 56, 66 };

	for (int i = 0; i < POINT_COUNT; i++)
	{
		p[i].x = x[i];
		p[i].y = y[i];
	}
	min_cover_circle(p, POINT_COUNT, center, radius);

	printf("min cover circle's center: (%.4f, %.4f)\n", center.x, center.y);
	printf("min cover circle's radius: %.4f\n", radius);
	getchar();

	return 0;
}

五.参考博文

1.最小圆覆盖算法(commonc博主)
2.最小圆覆盖算法(Howe_Young博主)

你可能感兴趣的:(计算几何,最小覆盖圆,最小圆覆盖,离散点在圆内部,最小覆盖圆c++代码,最小覆盖圆MATLAB代码)