keyof
索引查询对应任何类型T
,keyof T
的结果为该类型上所有公有属性key的联合:
interface Eg1 {
name: string,
readonly age: number,
}
// T1的类型实则是name | age
type T1 = keyof Eg1
class Eg2 {
private name: string;
public readonly age: number;
protected home: string;
}
// T2实则被约束为 age
// 而name和home不是公有属性,所以不能被keyof获取到
type T2 = keyof Eg2
infer
type Union<T> = T extends Array<infer U> ? U: never
type ParamType<T> = T extends (param: infer P) => any ? P: T;
// 解析如果T能赋值给(param: infer P) => any 类型,就返回P,否则就返回T
interface IDog {
name: string;
age:number;
}
type Func = (dog:IDog) => void;
type Param = ParamType<Func>; // IDog
type TypeString = ParamType<string> // string
T[K]
索引访问interface Eg1 {
name: string,
readonly age: number,
}
// string
type V1 = Eg1['name']
// string | number
type V2 = Eg1['name' | 'age']
// any
type V2 = Eg1['name' | 'age2222']
// string | number
type V3 = Eg1[keyof Eg1]
T[keyof T]
的方式,可以获取到T
所有key
的类型组成的联合类型; T[keyof K]
的方式,获取到的是T
中的key
且同时存在于K
时的类型组成的联合类型; 注意:如果[]
中的key有不存在T中的,则是any;因为ts也不知道该key最终是什么类型,所以是any;且也会报错;
&
交叉类型注意点交叉类型取的多个类型的并集,但是如果相同key
但是类型不同,则该key
为never
。
interface Eg1 {
name: string,
age: number,
}
interface Eg2 {
color: string,
age: string,
}
/**
* T的类型为 {name: string; age: never; color: string}
* 注意,age因为Eg1和Eg2中的类型不一致,所以交叉后age的类型是never
*/
type T = Eg1 & Eg2
// 可通过如下示例验证
const val: T = {
name: '',
color: '',
age: (function a() {
throw Error()
})(),
}
interface T1 {
name: string,
}
interface T2 {
sex: number,
}
/**
* @example
* T3 = {name: string, sex: number, age: number}
*/
interface T3 extends T1, T2 {
age: number,
}
注意,接口支持多重继承,语法为逗号隔开。如果是type实现继承,则可以使用交叉类型type A = B & C & D
。
表示条件判断,如果前面的条件满足,则返回问号后的第一个参数,否则第二个。类似于js的三元运算。
/**
* @example
* type A1 = 1
*/
type A1 = 'x' extends 'x' ? 1 : 2;
/**
* @example
* type A2 = 2
*/
type A2 = 'x' | 'y' extends 'x' ? 1 : 2;
/**
* @example
* type A3 = 1 | 2
*/
type P<T> = T extends 'x' ? 1 : 2;
type A3 = P<'x' | 'y'>
提问:为什么A2
和A3
的值不一样?
extends
前面的类型是泛型,且泛型传入的是联合类型时,则会依次判断该联合类型的所有子类型是否可分配给extends后面的类型(是一个分发的过程)。总结,就是extends
前面的参数为联合类型时则会分解(依次遍历所有的子类型进行条件判断)联合类型进行判断。然后将最终的结果组成新的联合类型。
如果不想被分解(分发),做法也很简单,可以通过简单的元组类型包裹以下:
type P<T> = [T] extends ['x'] ? 1 : 2;
/**
* type A4 = 2;
*/
type A4 = P<'x' | 'y'>
条件类型的分布式特性文档
集合论中,如果一个集合的所有元素在集合B中都存在,则A是B的子集;
类型系统中,如果一个类型的属性更具体,则该类型是子类型。(因为属性更少则说明该类型约束的更宽泛,是父类型)
因此,我们可以得出基本的结论:子类型比父类型更加具体,父类型比子类型更宽泛。 下面我们也将基于类型的可复制性(可分配性)、协变、逆变、双向协变等进行进一步的讲解。
interface Animal {
name: string;
}
interface Dog extends Animal {
break(): void;
}
let a: Animal;
let b: Dog;
// 可以赋值,子类型更佳具体,可以赋值给更佳宽泛的父类型
a = b;
// 反过来不行
b = a;
type A = 1 | 2 | 3;
type B = 2 | 3;
let a: A;
let b: B;
// 不可赋值
b = a;
// 可以赋值
a = b;
是不是A
的类型更多,A
就是子类型呢?恰恰相反,A
此处类型更多但是其表达的类型更宽泛,所以A
是父类型,B
是子类型。
因此b = a
不成立(父类型不能赋值给子类型),而a = b
成立(子类型可以赋值给父类型)。
interface Animal {
name: string;
}
interface Dog extends Animal {
break(): void;
}
let Eg1: Animal;
let Eg2: Dog;
// 兼容,可以赋值
Eg1 = Eg2;
let Eg3: Array<Animal>
let Eg4: Array<Dog>
// 兼容,可以赋值
Eg3 = Eg4
通过Eg3
和Eg4
来看,在Animal
和Dog
在变成数组后,Array
依旧可以赋值给Array
,因此对于type MakeArray = Array
来说就是协变的。
最后引用维基百科中的定义:
协变与逆变(Covariance and contravariance )是在计算机科学中,描述具有父/子型别关系的多个型别通过型别构造器、构造出的多个复杂型别之间是否有父/子型别关系的用语。
简单说就是,具有父子关系的多个类型,在通过某种构造关系构造成的新的类型,如果还具有父子关系则是协变的,而关系逆转了(子变父,父变子)就是逆变的。可能听起来有些抽象,下面我们将用更具体的例子进行演示说明:
interface Animal {
name: string;
}
interface Dog extends Animal {
break(): void;
}
type AnimalFn = (arg: Animal) => void
type DogFn = (arg: Dog) => void
let Eg1: AnimalFn;
let Eg2: DogFn;
// 不再可以赋值了,
// AnimalFn = DogFn不可以赋值了, Animal = Dog是可以的
Eg1 = Eg2;
// 反过来可以
Eg2 = Eg1;
理论上,Animal = Dog
是类型安全的,那么AnimalFn = DogFn
也应该类型安全才对,为什么Ts认为不安全呢?看下面的例子:
let animal: AnimalFn = (arg: Animal) => {}
let dog: DogFn = (arg: Dog) => {
arg.break();
}
// 假设类型安全可以赋值
animal = dog;
// 那么animal在调用时约束的参数,缺少dog所需的参数,此时会导致错误
animal({name: 'cat'});
从这个例子看到,如果dog函数赋值给animal函数,那么animal函数在调用时,约束的是参数必须要为Animal类型(而不是Dog),但是animal实际为dog的调用,此时就会出现错误。
因此,Animal
和Dog
在进行type Fn
构造器构造后,父子关系逆转了,此时成为“逆变”。
Ts在函数参数的比较中实际上默认采取的策略是双向协变:只有当源函数参数能够赋值给目标函数或者反过来时才能赋值成功。
这是不稳定的,因为调用者可能传入了一个具有更精确类型信息的函数,但是调用这个传入的函数的时候却使用了不是那么精确的类型信息(典型的就是上述的逆变)。 但是实际上,这极少会发生错误,并且能够实现很多JavaScript里的常见模式:
// lib.dom.d.ts中EventListener的接口定义
interface EventListener {
(evt: Event): void;
}
// 简化后的Event
interface Event {
readonly target: EventTarget | null;
preventDefault(): void;
}
// 简化合并后的MouseEvent
interface MouseEvent extends Event {
readonly x: number;
readonly y: number;
}
// 简化后的Window接口
interface Window {
// 简化后的addEventListener
addEventListener(type: string, listener: EventListener)
}
// 日常使用
window.addEventListener('click', (e: Event) => {});
window.addEventListener('mouseover', (e: MouseEvent) => {});
可以看到Window
的listener
函数要求参数是Event
,但是日常使用时更多时候传入的是Event
子类型。但是这里可以正常使用,正是其默认行为是双向协变的原因。可以通过tsconfig.js
中修改strictFunctionType
属性来严格控制协变和逆变。
敲重点!!!敲重点!!!敲重点!!!
infer
关键词的功能暂时先不做太详细的说明了,主要是用于extends
的条件类型中让Ts自己推到类型,具体的可以查阅官网。但是关于infer
的一些容易让人忽略但是非常重要的特性,这里必须要提及一下:
infer
推导的名称相同并且都处于逆变的位置,则推导的结果将会是交叉类型。type Bar<T> = T extends {
a: (x: infer U) => void;
b: (x: infer U) => void;
} ? U : never;
// type T1 = string
type T1 = Bar<{ a: (x: string) => void; b: (x: string) => void }>;
// type T2 = never
type T2 = Bar<{ a: (x: string) => void; b: (x: number) => void }>;
infer
推导的名称相同并且都处于协变的位置,则推导的结果将会是联合类型。type Foo<T> = T extends {
a: infer U;
b: infer U;
} ? U : never;
// type T1 = string
type T1 = Foo<{ a: string; b: string }>;
// type T2 = string | number
type T2 = Foo<{ a: string; b: number }>;
inter与协变逆变的参考文档点击这里
Partial
将T
的所有属性变成可选的。
/**
* 核心实现就是通过映射类型遍历T上所有的属性,
* 然后将每个属性设置为可选属性
*/
type Partial<T> = {
[P in keyof T]?: T[P];
}
[P in keyof T]
通过映射类型,遍历T
上的所有属性?:
设置为属性为可选的T[P]
设置类型为原来的类型扩展一下,将制定的key
变成可选类型:
/**
* 主要通过K extends keyof T约束K必须为keyof T的子类型
* keyof T得到的是T的所有key组成的联合类型
*/
type PartialOptional<T, K extends keyof T> = {
[P in K]?: T[P];
}
/**
* @example
* type Eg1 = { key1?: string; key2?: number }
*/
type Eg1 = PartialOptional<{
key1: string,
key2: number,
key3: ''
}, 'key1' | 'key2'>;
/**
* 主要实现是通过映射遍历所有key,
* 然后给每个key增加一个readonly修饰符
*/
type Readonly<T> = {
readonly [P in keyof T]: T[P]
}
/**
* @example
* type Eg = {
* readonly key1: string;
* readonly key2: number;
* }
*/
type Eg = Readonly<{
key1: string,
key2: number,
}>
挑选一组属性并组成一个新的类型。
type Pick<T, K extends keyof T> = {
[P in K]: T[P];
};
基本和上述同样的知识点,就不再赘述了。
构造一个type
,key
为联合类型中的每个子类型,类型为T
。文字不好理解,先看例子:
/**
* @example
* type Eg1 = {
* a: { key1: string; };
* b: { key1: string; };
* }
* @desc 就是遍历第一个参数'a' | 'b'的每个子类型,然后将值设置为第二参数
*/
type Eg1 = Record<'a' | 'b', {key1: string}>
Record
具体实现:
/**
* 核心实现就是遍历K,将值设置为T
*/
type Record<K extends keyof any, T> = {
[P in K]: T
}
/**
* @example
* type Eg2 = {a: B, b: B}
*/
interface A {
a: string,
b: number,
}
interface B {
key1: number,
key2: string,
}
type Eg2 = Record<keyof A, B>
keyof any
得到的是string | number | symbol
string | number | symbol
扩展: 同态与非同态。划重点!!! 划重点!!! 划重点!!!
Partial
、Readonly
和Pick
都属于同态的,即其实现需要输入类型T来拷贝属性,因此属性修饰符(例如readonly、?:)都会被拷贝。可从下面例子验证:/**
* @example
* type Eg = {readonly a?: string}
*/
type Eg = Pick<{readonly a?: string}, 'a'>
从Eg
的结果可以看到,Pick在拷贝属性时,连带拷贝了readonly
和?:
的修饰符。
Record
是非同态的,不需要拷贝属性,因此不会拷贝属性修饰符可能到这里就有小伙伴疑惑了,为什么Pick
拷贝了属性,而Record
没有拷贝?我们来对比一下其实现:
type Pick<T, K extends keyof T> = {
[P in K]: T[P];
};
type Record<K extends keyof any, T> = {
[P in K]: T
}
可以看到Pick
的实现中,注意P in K
(本质是P in keyof T
),T为输入的类型,而keyof T
则遍历了输入类型;而Record
的实现中,并没有遍历所有输入的类型,K只是约束为keyof any
的子类型即可。
最后再类比一下Pick、Partial、readonly
这几个类型工具,无一例外,都是使用到了keyof T
来辅助拷贝传入类型的属性。
Exclude
提取存在于T
,但不存在于U
的类型组成的联合类型。
/**
* 遍历T中的所有子类型,如果该子类型约束于U(存在于U、兼容于U),
* 则返回never类型,否则返回该子类型
*/
type Exclude<T, U> = T extends U ? never : T;
/**
* @example
* type Eg = 'key1'
*/
type Eg = Exclude<'key1' | 'key2', 'key2'>
敲重点!!!
never
表示一个不存在的类型never
与其他类型的联合后,是没有never
的/**
* @example
* type Eg2 = string | number
*/
type Eg2 = string | number | never
因此上述Eg
其实就等于key1 | never
,也就是type Eg = key1
Extract
提取联合类型T和联合类型U的所有交集。
type Extract<T, U> = T extends U ? T : never;
/**
* @example
* type Eg = 'key1'
*/
type Eg = Extract<'key1' | 'key2', 'key1'>
Omit
从类型T
中剔除K
中的所有属性。
/**
* 利用Pick实现Omit
*/
type Omit = Pick<T, Exclude<keyof T, K>>;
Pick
提取我们需要的keys组成的类型Omit = Pick
Exclude
;如果不利用Pick实现呢?
/**
* 利用映射类型Omit
*/
type Omit2<T, K extends keyof any> = {
[P in Exclude<keyof T, K>]: T[P]
}
Exclude
[P in Exclude]
Parameters 获取函数的参数类型,将每个参数类型放在一个元组中。
/**
* @desc 具体实现
*/
type Parameters<T extends (...args: any) => any> = T extends (...args: infer P) => any ? P : never;
/**
* @example
* type Eg = [arg1: string, arg2: number];
*/
type Eg = Parameters<(arg1: string, arg2: number) => void>;
Parameters
首先约束参数T
必须是个函数类型,所以(...args: any) => any>
替换成Function
也是可以的T
是否是函数类型,如果是则使用inter P
让ts自己推导出函数的参数类型,并将推导的结果存到类型P
上,否则就返回never
;敲重点!!!敲重点!!!敲重点!!!
infer
关键词作用是让Ts自己推导类型,并将推导结果存储在其参数绑定的类型上。Eg:infer P
就是将结果存在类型P
上,供使用。infer
关键词只能在extends
条件类型上使用,不能在其他地方使用。再敲重点!!!再敲重点!!!再敲重点!!!
type Eg = [arg1: string, arg2: number]
这是一个元组,但是和我们常见的元组type tuple = [string, number]
。官网未提到该部分文档说明,其实可以把这个作为类似命名元组,或者具名元组的意思去理解。实质上没有什么特殊的作用,比如无法通过这个具名去取值不行的。但是从语义化的角度,个人觉得多了语义化的表达罢了。/**
* 普通方式
*/
type Tuple1 = [string, number?];
const a: Tuple1 = ['aa', 11];
const a2: Tuple1 = ['aa'];
/**
* 具名方式
*/
type Tuple2 = [name: string, age?: number];
const b: Tuple2 = ['aa', 11];
const b2: Tuple2 = ['aa'];
扩展:infer
实现一个推导数组所有元素的类型:
/**
* 约束参数T为数组类型,
* 判断T是否为数组,如果是数组类型则推导数组元素的类型
*/
type FalttenArray<T extends Array<any>> = T extends Array<infer P> ? P : never;
/**
* type Eg1 = number | string;
*/
type Eg1 = FalttenArray<[number, string]>
/**
* type Eg2 = 1 | 'asd';
*/
type Eg2 = FalttenArray<[1, 'asd']>
ReturnType 获取函数的返回值类型。
/**
* @desc ReturnType的实现其实和Parameters的基本一样
* 无非是使用infer R的位置不一样。
*/
type ReturnType<T extends (...args: any) => any> = T extends (...args: any) => infer R ? R : any;
ConstructorParameters
可以获取类的构造函数的参数类型,存在一个元组中。
/**
* 核心实现还是利用infer进行推导构造函数的参数类型
*/
type ConstructorParameters<T extends abstract new (...args: any) => any> = T extends abstract new (...args: infer P) => any ? P : never;
/**
* @example
* type Eg = string;
*/
interface ErrorConstructor {
new(message?: string): Error;
(message?: string): Error;
readonly prototype: Error;
}
type Eg = ConstructorParameters<ErrorConstructor>;
/**
* @example
* type Eg2 = [name: string, sex?: number];
*/
class People {
constructor(public name: string, sex?: number) {}
}
type Eg2 = ConstructorParameters<typeof People>
T
为拥有构造函数的类。注意这里有个abstract
修饰符,等下会说明。T
是满足约束的类时,利用infer P
自动推导构造函数的参数类型,并最终返回该类型。敲重点!!!敲重点!!!敲重点!!!
那么疑问来了,为什么要对T要约束为abstract
抽象类呢?看下面例子:
/**
* 定义一个普通类
*/
class MyClass {}
/**
* 定义一个抽象类
*/
abstract class MyAbstractClass {}
// 可以赋值
const c1: typeof MyClass = MyClass
// 报错,无法将抽象构造函数类型分配给非抽象构造函数类型
const c2: typeof MyClass = MyAbstractClass
// 可以赋值
const c3: typeof MyAbstractClass = MyClass
// 可以赋值
const c4: typeof MyAbstractClass = MyAbstractClass
由此看出,如果将类型定义为抽象类(抽象构造函数),则既可以赋值为抽象类,也可以赋值为普通类;而反之则不行。
再敲重点!!!再敲重点!!!再敲重点!!!
这里继续提问,直接使用类作为类型,和使用typeof 类
作为类型,有什么区别呢?
/**
* 定义一个类
*/
class People {
name: number;
age: number;
constructor() {}
}
// p1可以正常赋值
const p1: People = new People();
// 等号后面的People报错,类型“typeof People”缺少类型“People”中的以下属性: name, age
const p2: People = People;
// p3报错,类型 "People" 中缺少属性 "prototype",但类型 "typeof People" 中需要该属性
const p3: typeof People = new People();
// p4可以正常赋值
const p4: typeof People = People;
结论是这样的:
typeof 类
作为类型时,约束的满足该类的类型;即该类型获取的是该类上的静态属性和方法。最后,只需要对infer
的使用换个位置,便可以获取构造函数返回值的类型:
type InstanceType<T extends abstract new (...args: any) => any> = T extends abstract new (...args: any) => infer R ? R : any;
/**
* @desc 构造一个将字符串转大写的类型
* @example
* type Eg1 = 'ABCD';
*/
type Eg1 = Uppercase<'abcd'>;
/**
* @desc 构造一个将字符串转小大写的类型
* @example
* type Eg2 = 'abcd';
*/
type Eg2 = Lowercase<'ABCD'>;
/**
* @desc 构造一个将字符串首字符转大写的类型
* @example
* type Eg3 = 'abcd';
*/
type Eg3 = Capitalize<'Abcd'>;
/**
* @desc 构造一个将字符串首字符转小写的类型
* @example
* type Eg3 = 'ABCD';
*/
type Eg3 = Uncapitalize<'aBCD'>;
这些类型工具,在lib.es5.d.ts
文件中是看不到具体定义的:
type Uppercase<S extends string> = intrinsic;
type Lowercase<S extends string> = intrinsic;
type Capitalize<S extends string> = intrinsic;
type Uncapitalize<S extends string> = intrinsic;
参考文章:Ts高手篇:22个示例深入讲解Ts最晦涩难懂的高级类型工具