项目中如果查询数据是直接到MySQL数据库中查询的话,会查磁盘走IO,效率会比较低,所以现在一般项目中都会使用缓存,目的就是提高查询数据的速度,将数据存入缓存中,也就是内存中,这样查询效率大大提高
分布式缓存方案
优点:
什么样的数据适合放到缓存中呢?
同时满足下面两个条件的数据就适合放缓存:
接下来我们使用 AOP技术 来实现分布式缓存,这样做的好处是避免重复代码,极大减少了工作量
我们希望分布式缓存能帮我们达到这样的目标:
此处我们选择的方案就是:AOP+自定义注解+Redis
首先我们需要一个简单的SpringBoot项目环境,这里我写了一个基础Demo版本,地址如下:
https://gitee.com/colinWu_java/spring-boot-base.git
大家可以先下载下来,本文就是基于这份主干代码进行修改的
pom.xml中需要新增以下依赖:
<dependency>
<groupId>org.springframework.bootgroupId>
<artifactId>spring-boot-starter-aopartifactId>
dependency>
<dependency>
<groupId>org.springframework.bootgroupId>
<artifactId>spring-boot-starter-data-redisartifactId>
dependency>
<dependency>
<groupId>com.fasterxml.jackson.coregroupId>
<artifactId>jackson-databindartifactId>
<version>2.10.5.1version>
dependency>
<dependency>
<groupId>com.fasterxml.jackson.coregroupId>
<artifactId>jackson-coreartifactId>
<version>2.11.1version>
dependency>
添加缓存的注解
package org.wujiangbo.annotation;
import java.lang.annotation.ElementType;
import java.lang.annotation.Retention;
import java.lang.annotation.RetentionPolicy;
import java.lang.annotation.Target;
/**
* @desc 自定义注解:向缓存中添加数据
* @author 波波老师(微信:javabobo0513)
*/
@Target({ElementType.METHOD, ElementType.TYPE})
@Retention(RetentionPolicy.RUNTIME)
public @interface MyCache {
String cacheNames() default "";
String key() default "";
//缓存时间(单位:秒,默认是无限期)
int time() default -1;
}
删除缓存注解:
package org.wujiangbo.annotation;
import java.lang.annotation.ElementType;
import java.lang.annotation.Retention;
import java.lang.annotation.RetentionPolicy;
import java.lang.annotation.Target;
/**
* @desc 自定义注解:从缓存中删除数据
* @author 波波老师(微信:javabobo0513)
*/
@Target({ElementType.METHOD, ElementType.TYPE})
@Retention(RetentionPolicy.RUNTIME)
public @interface MyCacheEvict {
String cacheNames() default "";
String key() default "";
}
下面两个切面类实际上是可以写在一个类中的,但是为了方便理解和观看,我分开写了
package org.wujiangbo.aop;
import lombok.extern.slf4j.Slf4j;
import org.aspectj.lang.ProceedingJoinPoint;
import org.aspectj.lang.annotation.Around;
import org.aspectj.lang.annotation.Aspect;
import org.aspectj.lang.annotation.Pointcut;
import org.springframework.stereotype.Component;
import org.wujiangbo.annotation.MyCache;
import org.wujiangbo.service.RedisService;
import javax.annotation.Resource;
import java.util.concurrent.TimeUnit;
/**
* @desc 切面类,处理分布式缓存添加功能
* @author 波波老师(微信:javabobo0513)
*/
@Aspect
@Component
@Slf4j
public class MyCacheAop {
@Resource
private RedisService redisService;
/**
* 定义切点
*/
@Pointcut("@annotation(myCache)")
public void pointCut(MyCache myCache){
}
/**
* 环绕通知
*/
@Around("pointCut(myCache)")
public Object around(ProceedingJoinPoint joinPoint, MyCache myCache) {
String cacheNames = myCache.cacheNames();
String key = myCache.key();
int time = myCache.time();
/**
* 思路:
* 1、拼装redis中存缓存的key值
* 2、看redis中是否存在该key
* 3、如果存在,直接取出来返回即可,不需要执行目标方法了
* 4、如果不存在,就执行目标方法,然后将缓存放一份到redis中
*/
String redisKey = new StringBuilder(cacheNames).append(":").append(key).toString();
String methodPath = joinPoint.getTarget().getClass().getName() + "." + joinPoint.getSignature().getName();
Object result ;
if (redisService.exists(redisKey)){
log.info("访问接口:[{}],直接从缓存获取数据", methodPath);
return redisService.getCacheObject(redisKey);
}
try {
//执行接口
result = joinPoint.proceed();
//接口返回结果存Redis
redisService.setCacheObject(redisKey, result, time, TimeUnit.SECONDS);
log.info("访问接口:[{}],返回值存入缓存成功", methodPath);
} catch (Throwable e) {
log.error("发生异常:{}", e);
throw new RuntimeException(e);
}
return result;
}
}
还有一个:
package org.wujiangbo.aop;
import lombok.extern.slf4j.Slf4j;
import org.aspectj.lang.ProceedingJoinPoint;
import org.aspectj.lang.annotation.Around;
import org.aspectj.lang.annotation.Aspect;
import org.aspectj.lang.annotation.Pointcut;
import org.springframework.stereotype.Component;
import org.wujiangbo.annotation.MyCacheEvict;
import org.wujiangbo.service.RedisService;
import javax.annotation.Resource;
/**
* @desc 切面类,处理分布式缓存删除功能
* @author 波波老师(微信:javabobo0513)
*/
@Aspect
@Component
@Slf4j
public class MyCacheEvictAop {
@Resource
private RedisService redisService;
/**
* 定义切点
*/
@Pointcut("@annotation(myCache)")
public void pointCut(MyCacheEvict myCache){
}
/**
* 环绕通知
*/
@Around("pointCut(myCache)")
public Object around(ProceedingJoinPoint joinPoint, MyCacheEvict myCache) {
String cacheNames = myCache.cacheNames();
String key = myCache.key();
/**
* 思路:
* 1、拼装redis中存缓存的key值
* 2、删除缓存
* 3、执行目标接口业务代码
* 4、再删除缓存
*/
String redisKey = new StringBuilder(cacheNames).append(":").append(key).toString();
String methodPath = joinPoint.getTarget().getClass().getName() + "." + joinPoint.getSignature().getName();
Object result ;
//删除缓存
redisService.deleteObject(redisKey);
try {
//执行接口
result = joinPoint.proceed();
//删除缓存
redisService.deleteObject(redisKey);
log.info("访问接口:[{}],缓存删除成功", methodPath);
} catch (Throwable e) {
log.error("发生异常:{}", e);
throw new RuntimeException(e);
}
return result;
}
}
Redis的工具类:
package org.wujiangbo.service;
import org.springframework.beans.factory.annotation.Autowired;
import org.springframework.data.redis.core.BoundSetOperations;
import org.springframework.data.redis.core.HashOperations;
import org.springframework.data.redis.core.RedisTemplate;
import org.springframework.data.redis.core.ValueOperations;
import org.springframework.stereotype.Component;
import java.util.*;
import java.util.concurrent.TimeUnit;
/**
* @desc Redis工具类
* @author 波波老师(微信:javabobo0513)
*/
@Component //交给Spring来管理 的自定义组件
public class RedisService {
@Autowired
public RedisTemplate redisTemplate;
/**
* 查看key是否存在
*/
public boolean exists(String key)
{
return redisTemplate.hasKey(key);
}
/**
* 清空Redis所有缓存数据
*/
public void clearAllRedisData()
{
Set<String> keys = redisTemplate.keys("*");
redisTemplate.delete(keys);
}
/**
* 缓存基本的对象,Integer、String、实体类等
*
* @param key 缓存的键值
* @param value 缓存的值
*/
public <T> void setCacheObject(final String key, final T value)
{
redisTemplate.opsForValue().set(key, value);
}
/**
* 缓存基本的对象,Integer、String、实体类等
*
* @param key 缓存的键值
* @param value 缓存的值
* @param timeout 时间
* @param timeUnit 时间颗粒度
*/
public <T> void setCacheObject(final String key, final T value, final Integer timeout, final TimeUnit timeUnit)
{
if(timeout == -1){
//永久有效
redisTemplate.opsForValue().set(key, value);
}
else{
redisTemplate.opsForValue().set(key, value, timeout, timeUnit);
}
}
/**
* 设置有效时间
*
* @param key Redis键
* @param timeout 超时时间
* @return true=设置成功;false=设置失败
*/
public boolean expire(final String key, final long timeout)
{
return expire(key, timeout, TimeUnit.SECONDS);
}
/**
* 设置有效时间
*
* @param key Redis键
* @param timeout 超时时间
* @param unit 时间单位
* @return true=设置成功;false=设置失败
*/
public boolean expire(final String key, final long timeout, final TimeUnit unit)
{
return redisTemplate.expire(key, timeout, unit);
}
/**
* 获得缓存的基本对象。
*
* @param key 缓存键值
* @return 缓存键值对应的数据
*/
public <T> T getCacheObject(final String key)
{
ValueOperations<String, T> operation = redisTemplate.opsForValue();
return operation.get(key);
}
/**
* 删除单个对象
*
* @param key
*/
public boolean deleteObject(final String key)
{
if(exists(key)){
redisTemplate.delete(key);
}
return true;
}
/**
* 删除集合对象
*
* @param collection 多个对象
* @return
*/
public long deleteObject(final Collection collection)
{
return redisTemplate.delete(collection);
}
/**
* 缓存List数据
*
* @param key 缓存的键值
* @param dataList 待缓存的List数据
* @return 缓存的对象
*/
public <T> long setCacheList(final String key, final List<T> dataList)
{
Long count = redisTemplate.opsForList().rightPushAll(key, dataList);
return count == null ? 0 : count;
}
/**
* 获得缓存的list对象
*
* @param key 缓存的键值
* @return 缓存键值对应的数据
*/
public <T> List<T> getCacheList(final String key)
{
return redisTemplate.opsForList().range(key, 0, -1);
}
/**
* 缓存Set
*
* @param key 缓存键值
* @param dataSet 缓存的数据
* @return 缓存数据的对象
*/
public <T> BoundSetOperations<String, T> setCacheSet(final String key, final Set<T> dataSet)
{
BoundSetOperations<String, T> setOperation = redisTemplate.boundSetOps(key);
Iterator<T> it = dataSet.iterator();
while (it.hasNext())
{
setOperation.add(it.next());
}
return setOperation;
}
/**
* 获得缓存的set
*
* @param key
* @return
*/
public <T> Set<T> getCacheSet(final String key)
{
return redisTemplate.opsForSet().members(key);
}
/**
* 缓存Map
*
* @param key
* @param dataMap
*/
public <T> void setCacheMap(final String key, final Map<String, T> dataMap)
{
if (dataMap != null) {
redisTemplate.opsForHash().putAll(key, dataMap);
}
}
/**
* 获得缓存的Map
*
* @param key
* @return
*/
public <T> Map<String, T> getCacheMap(final String key)
{
return redisTemplate.opsForHash().entries(key);
}
/**
* 往Hash中存入数据
*
* @param key Redis键
* @param hKey Hash键
* @param value 值
*/
public <T> void setCacheMapValue(final String key, final String hKey, final T value)
{
redisTemplate.opsForHash().put(key, hKey, value);
}
/**
* 获取Hash中的数据
*
* @param key Redis键
* @param hKey Hash键
* @return Hash中的对象
*/
public <T> T getCacheMapValue(final String key, final String hKey)
{
HashOperations<String, String, T> opsForHash = redisTemplate.opsForHash();
return opsForHash.get(key, hKey);
}
/**
* 获取多个Hash中的数据
*
* @param key Redis键
* @param hKeys Hash键集合
* @return Hash对象集合
*/
public <T> List<T> getMultiCacheMapValue(final String key, final Collection<Object> hKeys)
{
return redisTemplate.opsForHash().multiGet(key, hKeys);
}
/**
* 获得缓存的基本对象列表
*
* @param pattern 字符串前缀
* @return 对象列表
*/
public Collection<String> keys(final String pattern)
{
return redisTemplate.keys(pattern);
}
}
package org.wujiangbo.config;
import com.fasterxml.jackson.annotation.JsonAutoDetect;
import com.fasterxml.jackson.annotation.JsonTypeInfo;
import com.fasterxml.jackson.annotation.PropertyAccessor;
import com.fasterxml.jackson.databind.ObjectMapper;
import com.fasterxml.jackson.databind.jsontype.impl.LaissezFaireSubTypeValidator;
import org.springframework.cache.annotation.CachingConfigurerSupport;
import org.springframework.context.annotation.Bean;
import org.springframework.context.annotation.Configuration;
import org.springframework.data.redis.connection.RedisConnectionFactory;
import org.springframework.data.redis.core.RedisTemplate;
import org.springframework.data.redis.core.script.DefaultRedisScript;
import org.springframework.data.redis.serializer.StringRedisSerializer;
import javax.annotation.Resource;
/**
* @desc redis配置类
* @author 波波老师(微信:javabobo0513)
*/
@Configuration
public class RedisSerializableConfig extends CachingConfigurerSupport {
@Resource
private RedisConnectionFactory factory;
@Bean
public RedisTemplate<Object, Object> redisTemplate()
{
RedisTemplate<Object, Object> template = new RedisTemplate<>();
template.setConnectionFactory(factory);
FastJson2JsonRedisSerializer serializer = new FastJson2JsonRedisSerializer(Object.class);
ObjectMapper mapper = new ObjectMapper();
mapper.setVisibility(PropertyAccessor.ALL, JsonAutoDetect.Visibility.ANY);
mapper.activateDefaultTyping(LaissezFaireSubTypeValidator.instance, ObjectMapper.DefaultTyping.NON_FINAL, JsonTypeInfo.As.PROPERTY);
serializer.setObjectMapper(mapper);
// 使用StringRedisSerializer来序列化和反序列化redis的key值
template.setKeySerializer(new StringRedisSerializer());
template.setValueSerializer(serializer);
// Hash的key也采用StringRedisSerializer的序列化方式
template.setHashKeySerializer(new StringRedisSerializer());
template.setHashValueSerializer(serializer);
template.afterPropertiesSet();
return template;
}
@Bean
public DefaultRedisScript<Long> limitScript()
{
DefaultRedisScript<Long> redisScript = new DefaultRedisScript<>();
redisScript.setScriptText(limitScriptText());
redisScript.setResultType(Long.class);
return redisScript;
}
/**
* 限流脚本
*/
private String limitScriptText()
{
return "local key = KEYS[1]\n" +
"local count = tonumber(ARGV[1])\n" +
"local time = tonumber(ARGV[2])\n" +
"local current = redis.call('get', key);\n" +
"if current and tonumber(current) > count then\n" +
" return tonumber(current);\n" +
"end\n" +
"current = redis.call('incr', key)\n" +
"if tonumber(current) == 1 then\n" +
" redis.call('expire', key, time)\n" +
"end\n" +
"return tonumber(current);";
}
}
FastJson2JsonRedisSerializer类:
package org.wujiangbo.config;
import com.alibaba.fastjson.JSON;
import com.alibaba.fastjson.parser.ParserConfig;
import com.alibaba.fastjson.serializer.SerializerFeature;
import com.fasterxml.jackson.databind.JavaType;
import com.fasterxml.jackson.databind.ObjectMapper;
import com.fasterxml.jackson.databind.type.TypeFactory;
import org.springframework.data.redis.serializer.RedisSerializer;
import org.springframework.data.redis.serializer.SerializationException;
import org.springframework.util.Assert;
import java.nio.charset.Charset;
/**
* @desc Redis使用FastJson序列化
* @author 波波老师(微信:javabobo0513)
*/
public class FastJson2JsonRedisSerializer<T> implements RedisSerializer<T>
{
@SuppressWarnings("unused")
private ObjectMapper objectMapper = new ObjectMapper();
public static final Charset DEFAULT_CHARSET = Charset.forName("UTF-8");
private Class<T> clazz;
static
{
ParserConfig.getGlobalInstance().setAutoTypeSupport(true);
}
public FastJson2JsonRedisSerializer(Class<T> clazz)
{
super();
this.clazz = clazz;
}
@Override
public byte[] serialize(T t) throws SerializationException
{
if (t == null)
{
return new byte[0];
}
return JSON.toJSONString(t, SerializerFeature.WriteClassName).getBytes(DEFAULT_CHARSET);
}
@Override
public T deserialize(byte[] bytes) throws SerializationException
{
if (bytes == null || bytes.length <= 0)
{
return null;
}
String str = new String(bytes, DEFAULT_CHARSET);
return JSON.parseObject(str, clazz);
}
public void setObjectMapper(ObjectMapper objectMapper)
{
Assert.notNull(objectMapper, "'objectMapper' must not be null");
this.objectMapper = objectMapper;
}
protected JavaType getJavaType(Class<?> clazz)
{
return TypeFactory.defaultInstance().constructType(clazz);
}
}
server:
port: 8001
undertow:
# 设置IO线程数, 它主要执行非阻塞的任务,它们会负责多个连接, 默认设置每个CPU核心一个线程
# 不要设置过大,如果过大,启动项目会报错:打开文件数过多(CPU有几核,就填写几)
io-threads: 6
# 阻塞任务线程池, 当执行类似servlet请求阻塞IO操作, undertow会从这个线程池中取得线程
# 它的值设置取决于系统线程执行任务的阻塞系数,默认值是:io-threads * 8
worker-threads: 48
# 以下的配置会影响buffer,这些buffer会用于服务器连接的IO操作,有点类似netty的池化内存管理
# 每块buffer的空间大小,越小的空间被利用越充分,不要设置太大,以免影响其他应用,合适即可
buffer-size: 1024
# 每个区分配的buffer数量 , 所以pool的大小是buffer-size * buffers-per-region
buffers-per-region: 1024
# 是否分配的直接内存(NIO直接分配的堆外内存)
direct-buffers: true
spring:
#配置数据库链接信息
datasource:
url: jdbc:mysql://127.0.0.1:3306/test1?useSSL=false&useUnicode=true&characterEncoding=utf-8&allowMultiQueries=true&rewriteBatchedStatements=true
username: root
password: 123456
driver-class-name: com.mysql.jdbc.Driver
type: com.alibaba.druid.pool.DruidDataSource
application:
name: springboot #服务名
#redis配置
redis:
# 数据库索引
database: 0
# 地址
host: 127.0.0.1
# 端口,默认为6379
port: 6379
# 密码
password: 123456
# 连接超时时间
timeout: 10000
#MyBatis-Plus相关配置
mybatis-plus:
#指定Mapper.xml路径,如果与Mapper路径相同的话,可省略
mapper-locations: classpath:org/wujiangbo/mapper/*Mapper.xml
configuration:
map-underscore-to-camel-case: true #开启驼峰大小写自动转换
log-impl: org.apache.ibatis.logging.stdout.StdOutImpl #开启控制台sql输出
Controller中写两个接口分别测试一下缓存的新增和删除
package org.wujiangbo.controller;
import lombok.extern.slf4j.Slf4j;
import org.wujiangbo.annotation.CheckPermission;
import org.wujiangbo.annotation.MyCache;
import org.wujiangbo.annotation.MyCacheEvict;
import org.wujiangbo.result.JSONResult;
import org.springframework.web.bind.annotation.GetMapping;
import org.springframework.web.bind.annotation.RestController;
/**
* @desc 测试接口类
* @author 波波老师(weixin:javabobo0513)
*/
@RestController
@Slf4j
public class TestController {
//测试删除缓存
@GetMapping("/deleteCache")
@MyCacheEvict(cacheNames = "cacheTest", key = "userData")
public JSONResult deleteCache(){
System.out.println("deleteCache success");
return JSONResult.success("deleteCache success");
}
//测试新增缓存
@GetMapping("/addCache")
@MyCache(cacheNames = "cacheTest", key = "userData")
public JSONResult addCache(){
System.out.println("addCache success");
return JSONResult.success("addCache success");
}
}
浏览器先访问:http://localhost:8001/addCache
然后再通过工具查看Redis中是不是添加了缓存数据,正确情况应该是缓存添加进去了
然后再访问:http://localhost:8001/deleteCache
再通过工具查看Redis,缓存应该是被删除了,没有了
到此完全符合预期,测试成功
最后本案例代码已全部提交到gitee中了,地址如下:
https://gitee.com/colinWu_java/spring-boot-base.git
本文新增的代码在【RedisDistributedCache】分支中