第R3周:天气预测

  • 本文为365天深度学习训练营 中的学习记录博客
  • 参考文章:第R3周:LSTM-火灾温度预测(训练营内部可读)
  • 作者:K同学啊

任务说明:该数据集提供了来自澳大利亚许多地点的大约 10 年的每日天气观测数据。你需要做的是根据这些数据对RainTomorrow进行一个预测,这次任务任务与以往的不同,我增加了探索式数据分析(EDA),希望这部分内容可以帮助到大家。

一.导入数据

import numpy as np
import pandas as pd
import seaborn as sns
import matplotlib.pyplot as plt
import warnings
warnings.filterwarnings('ignore')

from sklearn.model_selection import train_test_split
from sklearn.preprocessing import MinMaxScaler
import tensorflow as tf
from tensorflow.keras.models import Sequential
from tensorflow.keras.layers import Dense, Activation,Dropout
from tensorflow.keras.callbacks import EarlyStopping
from sklearn.metrics import classification_report,confusion_matrix
from sklearn.metrics import r2_score
from sklearn.metrics import mean_absolute_error , mean_absolute_percentage_error , mean_squared_error
data = pd.read_csv("weatherAUS.csv")
df   = data.copy()
data.head()
Date Location MinTemp MaxTemp Rainfall Evaporation Sunshine WindGustDir WindGustSpeed WindDir9am ... Humidity9am Humidity3pm Pressure9am Pressure3pm Cloud9am Cloud3pm Temp9am Temp3pm RainToday RainTomorrow
0 2008-12-01 Albury 13.4 22.9 0.6 NaN NaN W 44.0 W ... 71.0 22.0 1007.7 1007.1 8.0 NaN 16.9 21.8 No No
1 2008-12-02 Albury 7.4 25.1 0.0 NaN NaN WNW 44.0 NNW ... 44.0 25.0 1010.6 1007.8 NaN NaN 17.2 24.3 No No
2 2008-12-03 Albury 12.9 25.7 0.0 NaN NaN WSW 46.0 W ... 38.0 30.0 1007.6 1008.7 NaN 2.0 21.0 23.2 No No
3 2008-12-04 Albury 9.2 28.0 0.0 NaN NaN NE 24.0 SE ... 45.0 16.0 1017.6 1012.8 NaN NaN 18.1 26.5 No No
4 2008-12-05 Albury 17.5 32.3 1.0 NaN NaN W 41.0 ENE ... 82.0 33.0 1010.8 1006.0 7.0 8.0 17.8 29.7 No No

5 rows × 23 columns

data.describe()
MinTemp MaxTemp Rainfall Evaporation Sunshine WindGustSpeed WindSpeed9am WindSpeed3pm Humidity9am Humidity3pm Pressure9am Pressure3pm Cloud9am Cloud3pm Temp9am Temp3pm
count 143975.000000 144199.000000 142199.000000 82670.000000 75625.000000 135197.000000 143693.000000 142398.000000 142806.000000 140953.000000 130395.00000 130432.000000 89572.000000 86102.000000 143693.000000 141851.00000
mean 12.194034 23.221348 2.360918 5.468232 7.611178 40.035230 14.043426 18.662657 68.880831 51.539116 1017.64994 1015.255889 4.447461 4.509930 16.990631 21.68339
std 6.398495 7.119049 8.478060 4.193704 3.785483 13.607062 8.915375 8.809800 19.029164 20.795902 7.10653 7.037414 2.887159 2.720357 6.488753 6.93665
min -8.500000 -4.800000 0.000000 0.000000 0.000000 6.000000 0.000000 0.000000 0.000000 0.000000 980.50000 977.100000 0.000000 0.000000 -7.200000 -5.40000
25% 7.600000 17.900000 0.000000 2.600000 4.800000 31.000000 7.000000 13.000000 57.000000 37.000000 1012.90000 1010.400000 1.000000 2.000000 12.300000 16.60000
50% 12.000000 22.600000 0.000000 4.800000 8.400000 39.000000 13.000000 19.000000 70.000000 52.000000 1017.60000 1015.200000 5.000000 5.000000 16.700000 21.10000
75% 16.900000 28.200000 0.800000 7.400000 10.600000 48.000000 19.000000 24.000000 83.000000 66.000000 1022.40000 1020.000000 7.000000 7.000000 21.600000 26.40000
max 33.900000 48.100000 371.000000 145.000000 14.500000 135.000000 130.000000 87.000000 100.000000 100.000000 1041.00000 1039.600000 9.000000 9.000000 40.200000 46.70000
data.dtypes
Date              object
Location          object
MinTemp          float64
MaxTemp          float64
Rainfall         float64
Evaporation      float64
Sunshine         float64
WindGustDir       object
WindGustSpeed    float64
WindDir9am        object
WindDir3pm        object
WindSpeed9am     float64
WindSpeed3pm     float64
Humidity9am      float64
Humidity3pm      float64
Pressure9am      float64
Pressure3pm      float64
Cloud9am         float64
Cloud3pm         float64
Temp9am          float64
Temp3pm          float64
RainToday         object
RainTomorrow      object
dtype: object
data['Date']=pd.to_datetime(data['Date'])
data['Date']
0        2008-12-01
1        2008-12-02
2        2008-12-03
3        2008-12-04
4        2008-12-05
            ...    
145455   2017-06-21
145456   2017-06-22
145457   2017-06-23
145458   2017-06-24
145459   2017-06-25
Name: Date, Length: 145460, dtype: datetime64[ns]
data['year']=data['Date'].dt.year
data['Month']=data['Date'].dt.month
data['day']=data['Date'].dt.day
data.head()
Date Location MinTemp MaxTemp Rainfall Evaporation Sunshine WindGustDir WindGustSpeed WindDir9am ... Pressure3pm Cloud9am Cloud3pm Temp9am Temp3pm RainToday RainTomorrow year Month day
0 2008-12-01 Albury 13.4 22.9 0.6 NaN NaN W 44.0 W ... 1007.1 8.0 NaN 16.9 21.8 No No 2008 12 1
1 2008-12-02 Albury 7.4 25.1 0.0 NaN NaN WNW 44.0 NNW ... 1007.8 NaN NaN 17.2 24.3 No No 2008 12 2
2 2008-12-03 Albury 12.9 25.7 0.0 NaN NaN WSW 46.0 W ... 1008.7 NaN 2.0 21.0 23.2 No No 2008 12 3
3 2008-12-04 Albury 9.2 28.0 0.0 NaN NaN NE 24.0 SE ... 1012.8 NaN NaN 18.1 26.5 No No 2008 12 4
4 2008-12-05 Albury 17.5 32.3 1.0 NaN NaN W 41.0 ENE ... 1006.0 7.0 8.0 17.8 29.7 No No 2008 12 5

5 rows × 26 columns

data.drop('Date',inplace=True,axis=1)
data.columns
Index(['Location', 'MinTemp', 'MaxTemp', 'Rainfall', 'Evaporation', 'Sunshine',
       'WindGustDir', 'WindGustSpeed', 'WindDir9am', 'WindDir3pm',
       'WindSpeed9am', 'WindSpeed3pm', 'Humidity9am', 'Humidity3pm',
       'Pressure9am', 'Pressure3pm', 'Cloud9am', 'Cloud3pm', 'Temp9am',
       'Temp3pm', 'RainToday', 'RainTomorrow', 'year', 'Month', 'day'],
      dtype='object')

二.探索式数据分析

1.数据相关性探索

seaborn.heatmap(data, vmin=None, vmax=None, cmap=None, center=None, robust=False, annot=None, fmt=‘.2g’,
annot_kws=None,linewidths=0, linecolor=‘white’, cbar=True, cbar_kws=None, cbar_ax=None, square=False,
xticklabels=‘auto’, yticklabels=‘auto’,mask=None, ax=None, **kwargs)

可参考:https://blog.csdn.net/weixin_46649052/article/details/115231716

square:布尔值,可选参数,如果为True,则将坐标轴方向设置为“equal”,以使每个单元格为方形。

annot: 布尔值或者矩形数据,可选参数,如果为True,则在每个热力图单元格中写入数据值。 如果数组的形状与data相同,则使用它来代替原始数据注释热力图

fmt:字符串,可选参数,添加注释时要使用的字符串格式代码。

plt.figure(figsize=(15,13))
# data.corr()表示了data中的两个变量之间的相关性
ax = sns.heatmap(data.corr(), square=True, annot=True, fmt='.2f')
ax.set_xticklabels(ax.get_xticklabels(), rotation=90)          
plt.show()

第R3周:天气预测_第1张图片

2.是否会下雨

sns.set(style="darkgrid")
plt.figure(figsize=(4,3))
sns.countplot(x='RainTomorrow',data=data)

第R3周:天气预测_第2张图片

plt.figure(figsize=(4,3))
sns.countplot(x='RainToday',data=data)

第R3周:天气预测_第3张图片

x=pd.crosstab(data['RainTomorrow'],data['RainToday'])
x
RainToday No Yes
RainTomorrow
No 92728 16858
Yes 16604 14597
y=x/x.transpose().sum().values.reshape(2,1)*100
y
RainToday No Yes
RainTomorrow
No 84.616648 15.383352
Yes 53.216243 46.783757

● 如果今天不下雨,那么明天下雨的机会 = 15%

● 如果今天下雨明天下雨的机会 = 46%

y.plot(kind="bar",figsize=(4,3),color=['#006666','#d279a6']);

第R3周:天气预测_第4张图片

3.地理位置和下雨的关系

x=pd.crosstab(data['Location'],data['RainToday']) 
# 获取每个城市下雨天数和非下雨天数的百分比
x
RainToday No Yes
Location
Adelaide 2402 689
Albany 2114 902
Albury 2394 617
AliceSprings 2788 244
BadgerysCreek 2345 583
Ballarat 2247 781
Bendigo 2472 562
Brisbane 2452 709
Cairns 2038 950
Canberra 2789 629
Cobar 2602 386
CoffsHarbour 2084 869
Dartmoor 2021 921
Darwin 2341 852
GoldCoast 2205 775
Hobart 2426 762
Katherine 1295 265
Launceston 2328 700
Melbourne 1799 636
MelbourneAirport 2356 653
Mildura 2680 327
Moree 2460 394
MountGambier 2110 921
MountGinini 2088 819
Newcastle 2224 731
Nhil 1327 242
NorahHead 2121 808
NorfolkIsland 2045 919
Nuriootpa 2411 592
PearceRAAF 2257 505
Penrith 2369 595
Perth 2548 645
PerthAirport 2442 567
Portland 1902 1094
Richmond 2391 560
Sale 2357 643
SalmonGums 2483 472
Sydney 2471 866
SydneyAirport 2231 774
Townsville 2513 520
Tuggeranong 2430 568
Uluru 1406 116
WaggaWagga 2440 536
Walpole 1870 949
Watsonia 2261 738
Williamtown 1853 700
Witchcliffe 2073 879
Wollongong 2269 713
Woomera 2789 202
y=x/x.sum(axis=1).values.reshape((-1, 1))*100
# 按每个城市的雨天百分比排序
y=y.sort_values(by='Yes',ascending=True )

color=['#cc6699','#006699','#006666','#862d86','#ff9966'  ]
y.Yes.plot(kind="barh",figsize=(15,20),color=color)

第R3周:天气预测_第5张图片

位置影响下雨,对于 Portland 来说,有 36% 的时间在下雨,而对于 Woomers 来说,只有6%的时间在下雨

4.湿度和压力对下雨的影响

data.columns
Index(['Location', 'MinTemp', 'MaxTemp', 'Rainfall', 'Evaporation', 'Sunshine',
       'WindGustDir', 'WindGustSpeed', 'WindDir9am', 'WindDir3pm',
       'WindSpeed9am', 'WindSpeed3pm', 'Humidity9am', 'Humidity3pm',
       'Pressure9am', 'Pressure3pm', 'Cloud9am', 'Cloud3pm', 'Temp9am',
       'Temp3pm', 'RainToday', 'RainTomorrow', 'year', 'Month', 'day'],
      dtype='object')
plt.figure(figsize=(8,6))
sns.scatterplot(data=data,x='Pressure9am',y='Pressure3pm',hue='RainTomorrow');

第R3周:天气预测_第6张图片

plt.figure(figsize=(8,6))
sns.scatterplot(data=data,x='Humidity9am',y='Humidity3pm',hue='RainTomorrow');

第R3周:天气预测_第7张图片

低压与高湿度会增加第二天下雨的概率,尤其是下午 3 点的空气湿度。

5.气温对下雨的影响

plt.figure(figsize=(8,6))
sns.scatterplot(x='MaxTemp', y='MinTemp', data=data, hue='RainTomorrow');

第R3周:天气预测_第8张图片

结论:当一天的最高气温和最低气温接近时,第二天下雨的概率会增加。

三.数据预处理

1.处理缺损值

# 每列中缺失数据的百分比
data.isnull().sum()/data.shape[0]*100
Location          0.000000
MinTemp           1.020899
MaxTemp           0.866905
Rainfall          2.241853
Evaporation      43.166506
Sunshine         48.009762
WindGustDir       7.098859
WindGustSpeed     7.055548
WindDir9am        7.263853
WindDir3pm        2.906641
WindSpeed9am      1.214767
WindSpeed3pm      2.105046
Humidity9am       1.824557
Humidity3pm       3.098446
Pressure9am      10.356799
Pressure3pm      10.331363
Cloud9am         38.421559
Cloud3pm         40.807095
Temp9am           1.214767
Temp3pm           2.481094
RainToday         2.241853
RainTomorrow      2.245978
year              0.000000
Month             0.000000
day               0.000000
dtype: float64
# 在该列中随机选择数进行填充
lst=['Evaporation','Sunshine','Cloud9am','Cloud3pm']
for col in lst:
    fill_list = data[col].dropna()
    data[col] = data[col].fillna(pd.Series(np.random.choice(fill_list, size=len(data.index))))
s = (data.dtypes == "object")
object_cols = list(s[s].index)
object_cols
['Location',
 'WindGustDir',
 'WindDir9am',
 'WindDir3pm',
 'RainToday',
 'RainTomorrow']
# inplace=True:直接修改原对象,不创建副本
# data[i].mode()[0] 返回频率出现最高的选项,众数

for i in object_cols:
    data[i].fillna(data[i].mode()[0], inplace=True)
t = (data.dtypes == "float64")
num_cols = list(t[t].index)
num_cols
['MinTemp',
 'MaxTemp',
 'Rainfall',
 'Evaporation',
 'Sunshine',
 'WindGustSpeed',
 'WindSpeed9am',
 'WindSpeed3pm',
 'Humidity9am',
 'Humidity3pm',
 'Pressure9am',
 'Pressure3pm',
 'Cloud9am',
 'Cloud3pm',
 'Temp9am',
 'Temp3pm']
# .median(), 中位数
for i in num_cols:
    data[i].fillna(data[i].median(), inplace=True)
data.isnull().sum()
Location         0
MinTemp          0
MaxTemp          0
Rainfall         0
Evaporation      0
Sunshine         0
WindGustDir      0
WindGustSpeed    0
WindDir9am       0
WindDir3pm       0
WindSpeed9am     0
WindSpeed3pm     0
Humidity9am      0
Humidity3pm      0
Pressure9am      0
Pressure3pm      0
Cloud9am         0
Cloud3pm         0
Temp9am          0
Temp3pm          0
RainToday        0
RainTomorrow     0
year             0
Month            0
day              0
dtype: int64

2.构建数据集

from sklearn.preprocessing import LabelEncoder

label_encoder = LabelEncoder()
for i in object_cols:
    data[i] = label_encoder.fit_transform(data[i])
X = data.drop(['RainTomorrow','day'],axis=1).values
y = data['RainTomorrow'].values
X_train, X_test, y_train, y_test = train_test_split(X,y,test_size=0.25,random_state=101)
scaler = MinMaxScaler()
scaler.fit(X_train)
X_train = scaler.transform(X_train)
X_test  = scaler.transform(X_test)

四.预测是否下雨

1.搭建神经网路

from tensorflow.keras.optimizers import Adam

model = Sequential()
model.add(Dense(units=24,activation='tanh',))
model.add(Dense(units=18,activation='tanh'))
model.add(Dense(units=23,activation='tanh'))
model.add(Dropout(0.5))
model.add(Dense(units=12,activation='tanh'))
model.add(Dropout(0.2))
model.add(Dense(units=1,activation='sigmoid'))

optimizer = tf.keras.optimizers.Adam(learning_rate=1e-4)

model.compile(loss='binary_crossentropy',
              optimizer=optimizer,
              metrics="accuracy")
early_stop = EarlyStopping(monitor='val_loss', 
                           mode='min',
                           min_delta=0.001, 
                           verbose=1, 
                           patience=25,
                           restore_best_weights=True)

2.模型训练

model.fit(x=X_train, 
          y=y_train, 
          validation_data=(X_test, y_test), verbose=1,
          callbacks=[early_stop],
          epochs = 10,
          batch_size = 32
)
Epoch 1/10
3410/3410 [==============================] - 8s 2ms/step - loss: 0.4570 - accuracy: 0.7996 - val_loss: 0.3916 - val_accuracy: 0.8283
Epoch 2/10
3410/3410 [==============================] - 8s 2ms/step - loss: 0.3962 - accuracy: 0.8304 - val_loss: 0.3774 - val_accuracy: 0.8356
Epoch 3/10
3410/3410 [==============================] - 8s 2ms/step - loss: 0.3887 - accuracy: 0.8351 - val_loss: 0.3776 - val_accuracy: 0.8379
Epoch 4/10
3410/3410 [==============================] - 8s 2ms/step - loss: 0.3840 - accuracy: 0.8372 - val_loss: 0.3724 - val_accuracy: 0.8389
Epoch 5/10
3410/3410 [==============================] - 8s 2ms/step - loss: 0.3814 - accuracy: 0.8382 - val_loss: 0.3734 - val_accuracy: 0.8394
Epoch 6/10
3410/3410 [==============================] - 8s 2ms/step - loss: 0.3794 - accuracy: 0.8391 - val_loss: 0.3697 - val_accuracy: 0.8399
Epoch 7/10
3410/3410 [==============================] - 8s 2ms/step - loss: 0.3791 - accuracy: 0.8393 - val_loss: 0.3692 - val_accuracy: 0.8408
Epoch 8/10
3410/3410 [==============================] - 8s 2ms/step - loss: 0.3774 - accuracy: 0.8395 - val_loss: 0.3686 - val_accuracy: 0.8411
Epoch 9/10
3410/3410 [==============================] - 8s 2ms/step - loss: 0.3771 - accuracy: 0.8398 - val_loss: 0.3680 - val_accuracy: 0.8410
Epoch 10/10
3410/3410 [==============================] - 8s 2ms/step - loss: 0.3767 - accuracy: 0.8395 - val_loss: 0.3677 - val_accuracy: 0.8411






3.结果可视化

import matplotlib.pyplot as plt

acc = model.history.history['accuracy']
val_acc = model.history.history['val_accuracy']

loss = model.history.history['loss']
val_loss = model.history.history['val_loss']

epochs_range = range(10)

plt.figure(figsize=(14, 4))
plt.subplot(1, 2, 1)

plt.plot(epochs_range, acc, label='Training Accuracy')
plt.plot(epochs_range, val_acc, label='Validation Accuracy')
plt.legend(loc='lower right')
plt.title('Training and Validation Accuracy')

plt.subplot(1, 2, 2)
plt.plot(epochs_range, loss, label='Training Loss')
plt.plot(epochs_range, val_loss, label='Validation Loss')
plt.legend(loc='upper right')
plt.title('Training and Validation Loss')
plt.show()

第R3周:天气预测_第9张图片


你可能感兴趣的:(深度学习记录,python,tensorflow,机器学习)