ResNet网络复现

ResNet

本篇实现的是基于2015年和2016年何凯明推出的ResNet,比较下效果。

学习流程

  1. 阅读ResNet论文原文
  2. 搜集学习资源:视频讲解-博客资源
  3. 熟悉ResNet网络结构
  4. 代码复现,清楚网络结构中层与层之间的操作

ResNet论文

原论文:2015-Deep Residual Learning for Image Recognition
2016-Identity Mappings in Deep Residual Networks
论文翻译:ResNet论文翻译——中文版

学习资源

博客资源

  • 本人写的一篇关于ResNet残差结构的深入理解ResNet之残差结构的理解
  • 卷积层后面跟batch normalization层时为什么不要偏置b
  • 深度残差网络RESNET
  • 主干网络系列(2) -ResNet V2:深度残差网络中的恒等映射
  • ResNet 残差、退化等细节解读
  • ResNet详解——通俗易懂版

视频资源

  • ResNet网络结构,BN以及迁移学习详解
  • 使用pytorch搭建ResNet并基于迁移学习训练
  • 使用tensorflow搭建ResNet网络并基于迁移学习的方法进行训练

ResNet网络结构

ResNet网络复现_第1张图片
ResNet网络复现_第2张图片

代码复现

设备:RTX3090
网络结构:ResNet50
训练方式:正常训练
数据集:3700多张5类别的花朵数据集
训练集:验证集=10:1
batch_size:64
epochs:60

分别采用了何凯明在2015年和2016年提出新残差结构,并加以比较两者的效果:

文件目录

ResNet网络复现_第3张图片
代码链接:WZMIAOMIAO-deep-learning-for-image-processing
代码说明:

  • 以上链接的ResNet是基于2015ResNet的代码实现,且实现的全连接部分并没有严格按照论文的代码进行,我在以上代码基础上将全连接层更改为论文的结构,并且实现了2016和2015两种模型,并加以比较,其中绘制训练图的代码也已在train_GPU.py文件给出,改进的代码贴出:
  • 链接代码基于官方的迁移学习实现

model.py:

from tensorflow.keras import layers, Model, Sequential


# resnet-18,34的结构
class BasicBlock(layers.Layer):
    expansion = 1

    # downsample 下采样函数
    def __init__(self, out_channel, strides=1, downsample=None, **kwargs):
        super(BasicBlock, self).__init__(**kwargs)
        self.conv1 = layers.Conv2D(out_channel, kernel_size=3, strides=strides,
                                   padding="SAME", use_bias=False)
        self.bn1 = layers.BatchNormalization(momentum=0.9, epsilon=1e-5)
        # -----------------------------------------
        self.conv2 = layers.Conv2D(out_channel, kernel_size=3, strides=1,
                                   padding="SAME", use_bias=False)
        self.bn2 = layers.BatchNormalization(momentum=0.9, epsilon=1e-5)
        # -----------------------------------------
        self.downsample = downsample
        self.relu = layers.ReLU()
        self.add = layers.Add()

    def call(self, inputs, training=False):
        identity = inputs
        if self.downsample is not None:
            identity = self.downsample(inputs)

        x = self.conv1(inputs)
        x = self.bn1(x, training=training)
        x = self.relu(x)

        x = self.conv2(x)
        x = self.bn2(x, training=training)

        x = self.add([identity, x])
        x = self.relu(x)

        return x

    # 瓶颈类,瓶颈两头大中间小,大小区分在深度,输入深度大(一头大),传入之后被压缩(中间小),输出被扩展(另一头大)


class Bottleneck(layers.Layer):
    expansion = 4

    # init好层的操作,这里均基于resnet-50,101,152的结构设计,这三层结构一致,只是这三层的组合数量不同
    def __init__(self, out_channel, strides=1, downsample=None, **kwargs):
        super(Bottleneck, self).__init__(**kwargs)
        self.conv1 = layers.Conv2D(out_channel, kernel_size=1, use_bias=False, name="conv1")  # 默认步长1
        self.bn1 = layers.BatchNormalization(momentum=0.9, epsilon=1e-5, name="conv1/BatchNorm")
        # -----------------------------------------
        self.conv2 = layers.Conv2D(out_channel, kernel_size=3, use_bias=False,
                                   strides=strides, padding="SAME", name="conv2")  # 从网络结构看,步长为2
        self.bn2 = layers.BatchNormalization(momentum=0.9, epsilon=1e-5, name="conv2/BatchNorm")
        # -----------------------------------------
        self.conv3 = layers.Conv2D(out_channel * self.expansion, kernel_size=1, use_bias=False, name="conv3")  # 默认步长1
        self.bn3 = layers.BatchNormalization(momentum=0.9, epsilon=1e-5, name="conv3/BatchNorm")
        # -----------------------------------------
        self.downsample = downsample
        self.add = layers.Add()
        self.relu = layers.ReLU()

    # 调用层的操作顺序
    # 2015ResNet
    # def call(self, inputs, training=False):
    #
    #     # 如果该层需要快捷连接,即需要下采样
    #     identity = inputs
    #     if self.downsample is not None:
    #         identity = self.downsample(inputs)
    #
    #     x = self.conv1(inputs)
    #     x = self.bn1(x, training=training)
    #     x = self.relu(x)
    #
    #     x = self.conv2(x)
    #     x = self.bn2(x, training=training)
    #     x = self.relu(x)
    #
    #     x = self.conv3(x)
    #     x = self.bn3(x, training=training)
    #
    #     x = self.add([x, identity])
    #     x = self.relu(x)
    #
    #     return x

    # 2016ResNet
    def call(self, inputs, training=False):

        # 如果该层需要快捷连接,即需要下采样
        identity = inputs
        if self.downsample is not None:
            identity = self.downsample(inputs)
        x = self.bn1(inputs, training=training)
        x = self.relu(x)
        x = self.conv1(x)

        x = self.bn2(x, training=training)
        x = self.relu(x)
        x = self.conv2(x)

        x = self.bn3(x, training=training)
        x = self.conv3(x)

        x = self.add([x, identity])
        x = self.relu(x)

        return x


# block对应basic和bottle类,resnet18/34对应basic,resnet50/101/152对应bottle
# in_channel表示上一层卷积的输出深度,channel表示这一个block的第一层卷积的卷积深度,block_num对应_resnet函数blocks_num列表的元素,表示第几个block
# name的命名作迁移学习识别层位置用,strides是每个block的stride

def _make_layer(block, in_channel, channel, block_num, name, strides=1):
    downsample = None
    # strides!=1表示输入会被降维,即输,或者输入in_channel和该层卷积最终输出深度channel*block.expansion不相等,则需要快捷连接
    if strides != 1 or in_channel != channel * block.expansion:
        downsample = Sequential([
            layers.Conv2D(channel * block.expansion, kernel_size=1, strides=strides,
                          use_bias=False, name="conv1"),
            layers.BatchNormalization(momentum=0.9, epsilon=1.001e-5, name="BatchNorm")
        ], name="shortcut")

    layers_list = []
    # 虚线残差结构,block的第一层卷积,名为unit_1
    layers_list.append(block(channel, downsample=downsample, strides=strides, name="unit_1"))
    # 实线残差结构
    for index in range(1, block_num):
        layers_list.append(block(channel, name="unit_" + str(index + 1)))

    return Sequential(layers_list, name=name)

    # 构造resnet网络框架
    # block表示构建的是basic还是bottle类的残差结构,block_num列表表示残差结构的结构的每一层的数量
    # include_top表示全连接层和max_pool是否需要定义,作迁移学习用


def _resnet(block, blocks_num, im_width=224, im_height=224, num_classes=1000, include_top=True):
    # tensorflow中的tensor通道排序是NHWC
    # (None, 224, 224, 3)
    input_image = layers.Input(shape=(im_height, im_width, 3), dtype="float32")
    # 第一层卷积conv1
    x = layers.Conv2D(filters=64, kernel_size=7, strides=2,
                      padding="SAME", use_bias=False, name="conv1")(input_image)
    # 第一层BN
    x = layers.BatchNormalization(momentum=0.9, epsilon=1e-5, name="conv1/BatchNorm")(x)
    # 第一层relu
    x = layers.ReLU()(x)

    # 第二层输入前最大池化下采样,高宽减半
    x = layers.MaxPool2D(pool_size=3, strides=2, padding="SAME")(x)

    # x.shape对应上一层输出特征矩阵的shpae,值为[batch,height,weight,channel]
    # 这里4个_make_layer对应论文网络结构中的conv2_x,conv3_x,conv4_x,conv5_x
    x = _make_layer(block, x.shape[-1], 64, blocks_num[0], name="block1")(x)
    x = _make_layer(block, x.shape[-1], 128, blocks_num[1], strides=2, name="block2")(x)
    x = _make_layer(block, x.shape[-1], 256, blocks_num[2], strides=2, name="block3")(x)
    x = _make_layer(block, x.shape[-1], 512, blocks_num[3], strides=2, name="block4")(x)

    # 顶层网络构建,即全连接层和max_pool层
    if include_top:
        x = layers.GlobalAvgPool2D()(x)  # pool + flatten
        x = layers.Dense(num_classes, name="logits")(x)
        predict = layers.Softmax()(x)
    else:
        predict = x

    model = Model(inputs=input_image, outputs=predict)

    return model


def resnet34(im_width=224, im_height=224, num_classes=1000, include_top=True):
    return _resnet(BasicBlock, [3, 4, 6, 3], im_width, im_height, num_classes, include_top)


def resnet50(im_width=224, im_height=224, num_classes=1000, include_top=True):
    return _resnet(Bottleneck, [3, 4, 6, 3], im_width, im_height, num_classes, include_top)


def resnet101(im_width=224, im_height=224, num_classes=1000, include_top=True):
    return _resnet(Bottleneck, [3, 4, 23, 3], im_width, im_height, num_classes, include_top)

train_GPU.py:

import matplotlib.pyplot as plt
from model import resnet50
import tensorflow as tf
import json
import os
import time
import glob
import random

os.environ["CUDA_DEVICE_ORDER"] = "PCI_BUS_ID"
os.environ["CUDA_VISIBLE_DEVICES"] = "0"


def main():
    gpus = tf.config.experimental.list_physical_devices("GPU")
    if gpus:
        try:
            for gpu in gpus:
                tf.config.experimental.set_memory_growth(gpu, True)
        except RuntimeError as e:
            print(e)
            exit(-1)

    data_root = os.path.abspath(os.path.join(os.getcwd(), "../.."))  # get data root path
    image_path = os.path.join(data_root, "data_set", "flower_data")  # flower data set path
    train_dir = os.path.join(image_path, "train")
    validation_dir = os.path.join(image_path, "val")
    assert os.path.exists(train_dir), "cannot find {}".format(train_dir)
    assert os.path.exists(validation_dir), "cannot find {}".format(validation_dir)

    # create direction for saving weights
    if not os.path.exists("save_weights"):
        os.makedirs("save_weights")

    im_height = 224
    im_width = 224

    _R_MEAN = 123.68
    _G_MEAN = 116.78
    _B_MEAN = 103.94

    batch_size = 64
    epochs = 60

    # class dict
    data_class = [cla for cla in os.listdir(train_dir) if os.path.isdir(os.path.join(train_dir, cla))]
    class_num = len(data_class)
    class_dict = dict((value, index) for index, value in enumerate(data_class))

    # reverse value and key of dict
    inverse_dict = dict((val, key) for key, val in class_dict.items())
    # write dict into json file
    json_str = json.dumps(inverse_dict, indent=4)
    with open('class_indices.json', 'w') as json_file:
        json_file.write(json_str)

    # load train images list
    random.seed(0)
    train_image_list = glob.glob(train_dir + "/*/*.jpg")
    random.shuffle(train_image_list)
    train_num = len(train_image_list)
    assert train_num > 0, "cannot find any .jpg file in {}".format(train_dir)
    train_label_list = [class_dict[path.split(os.path.sep)[-2]] for path in train_image_list]

    # load validation images list
    val_image_list = glob.glob(validation_dir + "/*/*.jpg")
    random.shuffle(val_image_list)
    val_num = len(val_image_list)
    assert val_num > 0, "cannot find any .jpg file in {}".format(validation_dir)
    val_label_list = [class_dict[path.split(os.path.sep)[-2]] for path in val_image_list]

    print("using {} images for training, {} images for validation.".format(train_num,
                                                                           val_num))

    def process_train_img(img_path, label):
        label = tf.one_hot(label, depth=class_num)
        image = tf.io.read_file(img_path)
        image = tf.image.decode_jpeg(image)
        # image = tf.image.convert_image_dtype(image, tf.float32)
        image = tf.cast(image, tf.float32)
        image = tf.image.resize(image, [im_height, im_width])
        image = tf.image.random_flip_left_right(image)
        # image = (image - 0.5) / 0.5
        image = image - [_R_MEAN, _G_MEAN, _B_MEAN]
        return image, label

    def process_val_img(img_path, label):
        label = tf.one_hot(label, depth=class_num)
        image = tf.io.read_file(img_path)
        image = tf.image.decode_jpeg(image)
        # image = tf.image.convert_image_dtype(image, tf.float32)
        image = tf.cast(image, tf.float32)
        image = tf.image.resize(image, [im_height, im_width])
        # image = (image - 0.5) / 0.5
        image = image - [_R_MEAN, _G_MEAN, _B_MEAN]
        return image, label

    AUTOTUNE = tf.data.experimental.AUTOTUNE

    # load train dataset
    train_dataset = tf.data.Dataset.from_tensor_slices((train_image_list, train_label_list))
    train_dataset = train_dataset.shuffle(buffer_size=train_num) \
        .map(process_train_img, num_parallel_calls=AUTOTUNE) \
        .repeat().batch(batch_size).prefetch(AUTOTUNE)

    # load train dataset
    val_dataset = tf.data.Dataset.from_tensor_slices((val_image_list, val_label_list))
    val_dataset = val_dataset.map(process_val_img, num_parallel_calls=tf.data.experimental.AUTOTUNE) \
        .repeat().batch(batch_size)

    # 实例化模型
    feature = resnet50(num_classes=5, include_top=True)
    # pre_weights_path = '../tf_resnet50_weights/pretrain_weights.ckpt'
    # assert len(glob.glob(pre_weights_path + "*")), "cannot find {}".format(pre_weights_path)
    # feature.load_weights(pre_weights_path)
    # feature.trainable = False
    #
    # model = tf.keras.Sequential([feature,
    #                              tf.keras.layers.GlobalAvgPool2D(),
    #                              tf.keras.layers.Dropout(rate=0.5),
    #                              tf.keras.layers.Dense(1024, activation="relu"),
    #                              tf.keras.layers.Dropout(rate=0.5),
    #                              tf.keras.layers.Dense(5),
    #                              tf.keras.layers.Softmax()])
    model = feature
    model.summary()

    # using keras low level api for training
    loss_object = tf.keras.losses.CategoricalCrossentropy(from_logits=False)
    optimizer = tf.keras.optimizers.Adam(learning_rate=0.0005)

    train_loss = tf.keras.metrics.Mean(name='train_loss')
    train_accuracy = tf.keras.metrics.CategoricalAccuracy(name='train_accuracy')

    test_loss = tf.keras.metrics.Mean(name='test_loss')
    test_accuracy = tf.keras.metrics.CategoricalAccuracy(name='test_accuracy')

    @tf.function
    def train_step(images, labels):
        with tf.GradientTape() as tape:
            output = model(images, training=True)
            loss = loss_object(labels, output)
        gradients = tape.gradient(loss, model.trainable_variables)
        optimizer.apply_gradients(zip(gradients, model.trainable_variables))

        train_loss(loss)
        train_accuracy(labels, output)

    @tf.function
    def test_step(images, labels):
        output = model(images, training=False)
        t_loss = loss_object(labels, output)

        test_loss(t_loss)
        test_accuracy(labels, output)

    best_test_loss = float('inf')
    train_step_num = train_num // batch_size
    val_step_num = val_num // batch_size
    train_time = 0
    train_loss_print = []
    val_loss_print = []
    train_accuracy_print = []
    val_accuracy_print = []
    for epoch in range(1, epochs + 1):
        train_loss.reset_states()  # clear history info
        train_accuracy.reset_states()  # clear history info
        test_loss.reset_states()  # clear history info
        test_accuracy.reset_states()  # clear history info

        t1 = time.perf_counter()
        for index, (images, labels) in enumerate(train_dataset):
            train_step(images, labels)
            if index + 1 == train_step_num:
                break
        print(time.perf_counter() - t1, "second")
        train_time += time.perf_counter() - t1
        for index, (images, labels) in enumerate(val_dataset):
            test_step(images, labels)
            if index + 1 == val_step_num:
                break

        template = 'Epoch {}, Loss: {}, Accuracy: {}, Test Loss: {}, Test Accuracy: {}'
        print(template.format(epoch,
                              train_loss.result(),
                              train_accuracy.result() * 100,
                              test_loss.result(),
                              test_accuracy.result() * 100))
        # 输出汇总
        train_loss_print.append(train_loss.result())
        val_loss_print.append(test_loss.result())
        train_accuracy_print.append(train_accuracy.result() * 100)
        val_accuracy_print.append(test_accuracy.result() * 100)
        if test_loss.result() < best_test_loss:
            model.save_weights("./2016save_weights/myResNet.ckpt", save_format='tf')
    print("训练花费:", train_time, "second")

    # 绘制损失图
    plt.figure()
    plt.plot(range(epochs), train_loss_print, label='train_loss')
    plt.plot(range(epochs), val_loss_print, label='val_loss')
    plt.legend()
    plt.xlabel('epochs')
    plt.ylabel('loss')

    # 绘制精确率图
    plt.figure()
    plt.plot(range(epochs), train_accuracy_print, label='train_accuracy')
    plt.plot(range(epochs), val_accuracy_print, label='val_accuracy')
    plt.legend()
    plt.xlabel('epochs')
    plt.ylabel('accuracy')
    plt.show()


if __name__ == '__main__':
    main()

2015残差结构

ResNet网络复现_第4张图片
2015年使用的残差块,这里每个卷积层的后面接着一个BN层,图中没画出来,前两层卷积层后面经过BN层之后还跟着ReLU层。

2016残差结构

ResNet网络复现_第5张图片
论文的想法是,新残差结构每个卷积层前都跟着一个BN层和一个ReLU层。
我自己的实验由于疏忽了最后一层卷积层,残差块的前两个卷积层都跟着BN层和ReLU层,最后一层卷积层前面只跟着一个BN层(少加了一个ReLU层,不过应该影响不大,因为ReLU的作用只是平滑整个训练过程(懒得跑多一次实验了))

这个结构在何凯明的实验中得到了最好的结果:
ResNet网络复现_第6张图片

实验总结

ResNet网络复现_第7张图片
ResNet网络复现_第8张图片
上面两张图中,左边是2015ResNet,右边是2016ResNet

总体来看,3700张的花分类数据集对这个网络来说太小了,使训练严重过拟合,但我们关注的不是过拟合,关注的是结构差异带来的增益,2016年的残差结构确实比2015的残差结构有了明显的提升,验证集准确率提升,浮动也轻微,验证集的loss浮动非常小,2015年的验证集loss非常大,同时整体的验证集loss比较低。

ResNet网络复现_第9张图片
两个网络对网上找的一张郁金香的预测效果都一样,概率100%识别郁金香。

我也使用了官方的迁移学习效果,验证集的准确率能达到90以上,如果我本地使用大量的数据集,我想也是可以达到相同的效果。

你可能感兴趣的:(深度学习,深度学习,神经网络,tensorflow)