【读书笔记】莫比乌斯函数与莫比乌斯反演

一、莫比乌斯(Möbius)函数

  对于每个正整数n(n ≥ 2),设它的质因数分解式为:

  

  根据这个式子定义n的莫比乌斯函数为:

  

  也就是如果n有平方因子,则为0. 否则是-1的质因数个数次方。

  举个简单的例子:6 = 2 × 3,所以;  9 = 3×3, 所以

 

  【命题一】

  对于正整数n有:

  

  也就是n>2时,所有n的约数对应函数值之和为0.

  

  证明:

  n=1的时候是显然的。

  n≥2时:

  ① 如果d中也含有平方因子,则其值为零。

  ② 设 , 若d中不含平方因子,则必有.

  所以有:

  得证。

 

二、欧拉函数

  欧拉函数φ(n)定义为,1~n中与n的最大公约数为1的数字的个数。例如 φ(5) = 4, φ(6) = 2

  若p为质数,显然 φ(p) = p-1

  若n=pk, 则n的大于1的约数有p, 2p, 3p,...(pk-1-2)p, (pk-1-1)p共pk-1个数。所以φ(n) = pk-pk-1

  而且欧拉函数为积性函数(证明较为麻烦,略去),即若m、n互质,有φ(m)φ(n) = φ(mn)

  所以对于任意

  

  或者写成这种形式:

  

  

  莫比乌斯函数和欧拉函数的关系:

  

  这个不是太难证明,自己在纸上演算一下就明白了。

 

三、莫比乌斯反演

  若定义在正整数集上的两个函数,f(n)和g(n)满足对任意n有:

        (1)

  

  则可以通过f来表示g:

      (2)

  反之,亦可以由关系(2)得到(1)

  

  证明:

  由式(1)有:

  

  于是:

  

  对于确定的d',d将取遍所有的因子,所以我们可以改变求和顺序:

  

  由上面的推导可知:只有当即n = d'时,等式右边才不为0。所以右边和式只剩下g(n)一项了。

  

  简单运用:

  上面说到莫比乌斯函数和欧拉函数的关系,

  变形为:

  视f(n) = n,  g(n) = φ(n), 上式相当于反演公式中的(2)式

  根据反演公式,可得到(1)式:

  

转载于:https://www.cnblogs.com/AOQNRMGYXLMV/p/4065628.html

你可能感兴趣的:(【读书笔记】莫比乌斯函数与莫比乌斯反演)