魔改YOLOv5算法系列(1)——注意力机制添加

小伙伴们,该如何给YOLOv5算法网络添加注意力:

主要改这三个文件:分别是 common.py、yolo.py以及以及配置文件.yaml。

1.打开common.py,复制粘贴注意力模块

 例如:卷积注意力CBAM

魔改YOLOv5算法系列(1)——注意力机制添加_第1张图片

CBAM代码段:

class ChannelAttention(nn.Module):
    def __init__(self, in_planes, ratio=16):
        super(ChannelAttention, self).__init__()
        self.avg_pool = nn.AdaptiveAvgPool2d(1)
        self.max_pool = nn.AdaptiveMaxPool2d(1)
 
        self.f1 = nn.Conv2d(in_planes, in_planes // ratio, 1, bias=False)
        self.relu = nn.ReLU()
        self.f2 = nn.Conv2d(in_planes // ratio, in_planes, 1, bias=False)
        # 写法二,亦可使用顺序容器
        # self.sharedMLP = nn.Sequential(
        # nn.Conv2d(in_planes, in_planes // ratio, 1, bias=False), nn.ReLU(),
        # nn.Conv2d(in_planes // rotio, in_planes, 1, bias=False))
 
        self.sigmoid = nn.Sigmoid()
 
    def forward(self, x):
        avg_out = self.f2(self.relu(self.f1(self.avg_pool(x))))
        max_out = self.f2(self.relu(self.f1(self.max_pool(x))))
        out = self.sigmoid(avg_out + max_out)
        return out
 
 
class SpatialAttention(nn.Module):
    def __init__(self, kernel_size=7):
        super(SpatialAttention, self).__init__()
 
        assert kernel_size in (3, 7), 'kernel size must be 3 or 7'
        padding = 3 if kernel_size == 7 else 1
 
        self.conv = nn.Conv2d(2, 1, kernel_size, padding=padding, bias=False)
        self.sigmoid = nn.Sigmoid()
 
    def forward(self, x):
        avg_out = torch.mean(x, dim=1, keepdim=True)
        max_out, _ = torch.max(x, dim=1, keepdim=True)
        x = torch.cat([avg_out, max_out], dim=1)
        x = self.conv(x)
        return self.sigmoid(x)
 
 
class CBAM(nn.Module):
    # CSP Bottleneck with 3 convolutions
    def __init__(self, c1, c2, ratio=16, kernel_size=7):  # ch_in, ch_out, number, shortcut, groups, expansion
        super(CBAM, self).__init__()
        # c_ = int(c2 * e)  # hidden channels
        # self.cv1 = Conv(c1, c_, 1, 1)
        # self.cv2 = Conv(c1, c_, 1, 1)
        # self.cv3 = Conv(2 * c_, c2, 1)
        # self.m = nn.Sequential(*[Bottleneck(c_, c_, shortcut, g, e=1.0) for _ in range(n)])
        self.channel_attention = ChannelAttention(c1, ratio)
        self.spatial_attention = SpatialAttention(kernel_size)
 
        # self.m = nn.Sequential(*[CrossConv(c_, c_, 3, 1, g, 1.0, shortcut) for _ in range(n)])
 
    def forward(self, x):
        out = self.channel_attention(x) * x
        # print('outchannels:{}'.format(out.shape))
        out = self.spatial_attention(out) * out
        return out

2.打开yolo.py文件,加入注意力模块

魔改YOLOv5算法系列(1)——注意力机制添加_第2张图片

 3.修改配置文件.yaml即可

可加在backbone或者neck部分,具体根据实际情况进行修改。

你可能感兴趣的:(深度学习,目标检测,python,神经网络)