Pytorch中torch.stack() 函数解析

一. torch.stack()函数解析

1. 函数说明:

1.1 官网:torch.stack(),函数定义及参数说明如下图所示:

Pytorch中torch.stack() 函数解析_第1张图片

1.2 函数功能

沿一个新维度对输入一系列张量进行连接,序列中所有张量应为相同形状,stack 函数返回的结果会新增一个维度。也即是把多个2维的张量凑成一个3维的张量;多个3维的凑成一个4维的张量…以此类推,也就是在增加新的维度上面进行堆叠。

1.3 参数列表

  • tensors :为一系列输入张量,类型为turple和List
  • dim :新增维度的(下标)位置,当dim = -1时默认最后一个维度;范围必须介于 0 到输入张量的维数之间,默认是dim=0,在第0维进行连接
  • 返回值:输出新增维度后的张量

2. 代码举例

2.1 dim = 0 : 在第0维进行连接,相当于在行上进行组合(输入张量为一维,输出张量为两维)

import torch
#二维输入张量a,b
a = torch.tensor([1, 2, 3])
b = torch.tensor([11, 22, 33])
c = torch.stack([a, b],dim=0)#在第0维进行连接,相当于在行上进行组合(输入张量为一维,输出张量为两维)
print(a)
print(b)
print(c)
输出结果如下:
tensor([1, 2, 3])
tensor([11, 22, 33])
tensor([[ 1,  2,  3],
        [11, 22, 33]])

2.2 dim = 1 :在第1维进行连接,相当于在对应行上面对列元素进行组合(输入张量为一维,输出张量为两维)

import torch
#二维输入张量a,b
a = torch.tensor([1, 2, 3])
b = torch.tensor([11, 22, 33])
c = torch.stack([a, b],dim=1)#在第1维进行连接,相当于在对应行上面对列元素进行组合(输入张量为一维,输出张量为两维)
print(a)
print(b)
print(c)
输出结果如下:
tensor([1, 2, 3])
tensor([11, 22, 33])
tensor([[ 1, 11],
        [ 2, 22],
        [ 3, 33]])

2.3 dim=0:表示在第0维进行连接,相当于在通道维度上进行组合(输入张量为两维,输出张量为三维),注意:此处输入张量维度为二维,因此dim最大只能为2。

import torch
#二维输入张量a,b
a = torch.tensor([[1, 2, 3], [4, 5, 6], [7, 8, 9]])
b = torch.tensor([[11, 22, 33], [44, 55, 66], [77, 88, 99]])
c = torch.stack([a, b],dim=0)#在第0维进行连接,相当于在通道维度上进行组合(输入张量为两维,输出张量为三维)
print(a)
print(b)
print(c)
输出结果如下所示:
tensor([[1, 2, 3],
        [4, 5, 6],
        [7, 8, 9]])
tensor([[11, 22, 33],
        [44, 55, 66],
        [77, 88, 99]])
tensor([[[ 1,  2,  3],
         [ 4,  5,  6],
         [ 7,  8,  9]],

        [[11, 22, 33],
         [44, 55, 66],
         [77, 88, 99]]])

2.4 dim=1:表示在第1维进行连接,相当于对相应通道中每个行进行组合,注意:此处输入张量维度为二维,因此dim最大只能为2。

import torch
#二维输入张量a,b
a = torch.tensor([[1, 2, 3], [4, 5, 6], [7, 8, 9]])
b = torch.tensor([[11, 22, 33], [44, 55, 66], [77, 88, 99]])
c = torch.stack([a, b], 1)#在第1维进行连接,相当于对相应通道中每个行进行组合
print(a)
print(b)
print(c)
输出结果如下所示:
tensor([[1, 2, 3],
        [4, 5, 6],
        [7, 8, 9]])
tensor([[11, 22, 33],
        [44, 55, 66],
        [77, 88, 99]])
tensor([[[ 1,  2,  3],
         [11, 22, 33]],

        [[ 4,  5,  6],
         [44, 55, 66]],

        [[ 7,  8,  9],
         [77, 88, 99]]])

2.5 dim=2:表示在第2维进行连接,相当于对相应行中每个列元素进行组合,注意:此处输入张量维度为二维,因此dim最大只能为2。

import torch
#二维输入张量a,b
a = torch.tensor([[1, 2, 3], [4, 5, 6], [7, 8, 9]])
b = torch.tensor([[11, 22, 33], [44, 55, 66], [77, 88, 99]])
c = torch.stack([a, b], 2)#在第2维进行连接,相当于对相应行中每个列元素进行组合
print(a)
print(b)
print(c)
输出结果如下所示:
tensor([[1, 2, 3],
        [4, 5, 6],
        [7, 8, 9]])
tensor([[11, 22, 33],
        [44, 55, 66],
        [77, 88, 99]])
tensor([[[ 1, 11],
         [ 2, 22],
         [ 3, 33]],

        [[ 4, 44],
         [ 5, 55],
         [ 6, 66]],

        [[ 7, 77],
         [ 8, 88],
         [ 9, 99]]])

2.6 dim=3:表示在第3维进行连接,相当于对相应行中每个列元素进行组合(输入维度大小为3维,因此dim=3最后一维始终代表为列),注意:此处输入张量维度为三维,因此dim最大只能为3。

import torch
#三维输入张量a,b
a = torch.tensor([[[1, 2, 3], [4, 5, 6], [7, 8, 9]],[[10, 20, 30], [40, 50, 60], [70, 80, 90]]])
b = torch.tensor([[[11, 22, 33], [44, 55, 66], [77, 88, 99]], [[110, 220, 330], [440, 550, 660], [770, 880, 990]]])
c = torch.stack([a, b], 3)#表示在第3维进行连接,相当于对相应行中每个列元素进行组合(最后一维是第三维,始终代表为列)
print(a)
print(b)
print(c)
输出结果如下所示:
tensor([[[ 1,  2,  3],
         [ 4,  5,  6],
         [ 7,  8,  9]],

        [[10, 20, 30],
         [40, 50, 60],
         [70, 80, 90]]])
tensor([[[ 11,  22,  33],
         [ 44,  55,  66],
         [ 77,  88,  99]],

        [[110, 220, 330],
         [440, 550, 660],
         [770, 880, 990]]])
tensor([[[[  1,  11],
          [  2,  22],
          [  3,  33]],

         [[  4,  44],
          [  5,  55],
          [  6,  66]],

         [[  7,  77],
          [  8,  88],
          [  9,  99]]],


        [[[ 10, 110],
          [ 20, 220],
          [ 30, 330]],

         [[ 40, 440],
          [ 50, 550],
          [ 60, 660]],

         [[ 70, 770],
          [ 80, 880],
          [ 90, 990]]]])

2.7 dim=4 (错误维度:因为此处输入张量维度为三维,所以dim最大只能为3,此处维度为4,因此会报错)

import torch
#三维输入张量a,b
a = torch.tensor([[[1, 2, 3], [4, 5, 6], [7, 8, 9]],[[10, 20, 30], [40, 50, 60], [70, 80, 90]]])
b = torch.tensor([[[11, 22, 33], [44, 55, 66], [77, 88, 99]], [[110, 220, 330], [440, 550, 660], [770, 880, 990]]])
c = torch.stack([a, b], 4)
print(a)
print(b)
print(c)
输出错误:
IndexError: Dimension out of range (expected to be in range of [-4, 3], but got 4)

你可能感兴趣的:(Pytorch基础,pytorch,深度学习,python)