本系列基本不讲数学原理,只从代码角度去让读者们利用最简洁的Python代码实现机器学习方法。
学机器学习的应该都知道支持向量机(SVM),这个方法在深度学习兴起之前算是很热门的分类方法,在机器学习里面,分类算法属SVM效果比较好,回归算法属随机森林(RF)的效果比较好。
虽然目前在深度学习神经网络算法的面前,它们的效果都已经黯然失色。但是学术界还是不少人使用这些传统的算法,因为数学理论强,很受老师们喜欢。
相关向量机(RVM)也是,它是一种基于贝叶斯框架的方法,核心思想是先验后验概率找最大似然,在科研领域中,关于使用RVM的文章不在少数。
但是由于我们最常用的sklearn库没有rvm的接口......所以没办法直接调用,这篇博客就是补充这个空白的。rvm使用Python实现相关向量机,并且做成我们最为熟悉的sklearn库接口,方便使用。
我这里就不多介绍原理了,感兴趣同学直接看这个pdf,讲的还是不错的。
https://files-cdn.cnblogs.com/files/axlute/RVMExplained.pdf
定义RVM的类,回归和分类都有。
"""Relevance Vector Machine classes for regression and classification."""
import numpy as np
from scipy.optimize import minimize
from scipy.special import expit
from sklearn.base import BaseEstimator, RegressorMixin, ClassifierMixin
from sklearn.metrics.pairwise import (
linear_kernel,
rbf_kernel,
polynomial_kernel
)
from sklearn.multiclass import OneVsOneClassifier
from sklearn.utils.validation import check_X_y
class BaseRVM(BaseEstimator):
"""Base Relevance Vector Machine class.
Implementation of Mike Tipping's Relevance Vector Machine using the
scikit-learn API. Add a posterior over weights method and a predict
in subclass to use for classification or regression.
"""
def __init__(
self,
kernel='rbf',
degree=3,
coef1=None,
coef0=0.0,
n_iter=3000,
tol=1e-3,
alpha=1e-6,
threshold_alpha=1e9,
beta=1.e-6,
beta_fixed=False,
bias_used=True,
verbose=False
):
"""Copy params to object properties, no validation."""
self.kernel = kernel
self.degree = degree
self.coef1 = coef1
self.coef0 = coef0
self.n_iter = n_iter
self.tol = tol
self.alpha = alpha
self.threshold_alpha = threshold_alpha
self.beta = beta
self.beta_fixed = beta_fixed
self.bias_used = bias_used
self.verbose = verbose
def get_params(self, deep=True):
"""Return parameters as a dictionary."""
params = {
'kernel': self.kernel,
'degree': self.degree,
'coef1': self.coef1,
'coef0': self.coef0,
'n_iter': self.n_iter,
'tol': self.tol,
'alpha': self.alpha,
'threshold_alpha': self.threshold_alpha,
'beta': self.beta,
'beta_fixed': self.beta_fixed,
'bias_used': self.bias_used,
'verbose': self.verbose
}
return params
def set_params(self, **parameters):
"""Set parameters using kwargs."""
for parameter, value in parameters.items():
setattr(self, parameter, value)
return self
def _apply_kernel(self, x, y):
"""Apply the selected kernel function to the data."""
if self.kernel == 'linear':
phi = linear_kernel(x, y)
elif self.kernel == 'rbf':
phi = rbf_kernel(x, y, self.coef1)
elif self.kernel == 'poly':
phi = polynomial_kernel(x, y, self.degree, self.coef1, self.coef0)
elif callable(self.kernel):
phi = self.kernel(x, y)
if len(phi.shape) != 2:
raise ValueError(
"Custom kernel function did not return 2D matrix"
)
if phi.shape[0] != x.shape[0]:
raise ValueError(
"Custom kernel function did not return matrix with rows"
" equal to number of data points."""
)
else:
raise ValueError("Kernel selection is invalid.")
if self.bias_used:
phi = np.append(phi, np.ones((phi.shape[0], 1)), axis=1)
return phi
def _prune(self):
"""Remove basis functions based on alpha values."""
keep_alpha = self.alpha_ < self.threshold_alpha
if not np.any(keep_alpha):
keep_alpha[0] = True
if self.bias_used:
keep_alpha[-1] = True
if self.bias_used:
if not keep_alpha[-1]:
self.bias_used = False
self.relevance_ = self.relevance_[keep_alpha[:-1]]
else:
self.relevance_ = self.relevance_[keep_alpha]
self.alpha_ = self.alpha_[keep_alpha]
self.alpha_old = self.alpha_old[keep_alpha]
self.gamma = self.gamma[keep_alpha]
self.phi = self.phi[:, keep_alpha]
self.sigma_ = self.sigma_[np.ix_(keep_alpha, keep_alpha)]
self.m_ = self.m_[keep_alpha]
def fit(self, X, y):
"""Fit the RVR to the training data."""
X, y = check_X_y(X, y)
n_samples, n_features = X.shape
self.phi = self._apply_kernel(X, X)
n_basis_functions = self.phi.shape[1]
self.relevance_ = X
self.y = y
self.alpha_ = self.alpha * np.ones(n_basis_functions)
self.beta_ = self.beta
self.m_ = np.zeros(n_basis_functions)
self.alpha_old = self.alpha_
for i in range(self.n_iter):
self._posterior()
self.gamma = 1 - self.alpha_*np.diag(self.sigma_)
self.alpha_ = self.gamma/(self.m_ ** 2)
if not self.beta_fixed:
self.beta_ = (n_samples - np.sum(self.gamma))/(
np.sum((y - np.dot(self.phi, self.m_)) ** 2))
self._prune()
if self.verbose:
print("Iteration: {}".format(i))
print("Alpha: {}".format(self.alpha_))
print("Beta: {}".format(self.beta_))
print("Gamma: {}".format(self.gamma))
print("m: {}".format(self.m_))
print("Relevance Vectors: {}".format(self.relevance_.shape[0]))
print()
delta = np.amax(np.absolute(self.alpha_ - self.alpha_old))
if delta < self.tol and i > 1:
break
self.alpha_old = self.alpha_
if self.bias_used:
self.bias = self.m_[-1]
else:
self.bias = None
return self
class RVR(BaseRVM, RegressorMixin):
"""Relevance Vector Machine Regression.
Implementation of Mike Tipping's Relevance Vector Machine for regression
using the scikit-learn API.
"""
def _posterior(self):
"""Compute the posterior distriubtion over weights."""
i_s = np.diag(self.alpha_) + self.beta_ * np.dot(self.phi.T, self.phi)
self.sigma_ = np.linalg.inv(i_s)
self.m_ = self.beta_ * np.dot(self.sigma_, np.dot(self.phi.T, self.y))
def predict(self, X, eval_MSE=False):
"""Evaluate the RVR model at x."""
phi = self._apply_kernel(X, self.relevance_)
y = np.dot(phi, self.m_)
if eval_MSE:
MSE = (1/self.beta_) + np.dot(phi, np.dot(self.sigma_, phi.T))
return y, MSE[:, 0]
else:
return y
class RVC(BaseRVM, ClassifierMixin):
"""Relevance Vector Machine Classification.
Implementation of Mike Tipping's Relevance Vector Machine for
classification using the scikit-learn API.
"""
def __init__(self, n_iter_posterior=50, **kwargs):
"""Copy params to object properties, no validation."""
self.n_iter_posterior = n_iter_posterior
super(RVC, self).__init__(**kwargs)
def get_params(self, deep=True):
"""Return parameters as a dictionary."""
params = super(RVC, self).get_params(deep=deep)
params['n_iter_posterior'] = self.n_iter_posterior
return params
def _classify(self, m, phi):
return expit(np.dot(phi, m))
def _log_posterior(self, m, alpha, phi, t):
y = self._classify(m, phi)
log_p = -1 * (np.sum(np.log(y[t == 1]), 0) +
np.sum(np.log(1-y[t == 0]), 0))
log_p = log_p + 0.5*np.dot(m.T, np.dot(np.diag(alpha), m))
jacobian = np.dot(np.diag(alpha), m) - np.dot(phi.T, (t-y))
return log_p, jacobian
def _hessian(self, m, alpha, phi, t):
y = self._classify(m, phi)
B = np.diag(y*(1-y))
return np.diag(alpha) + np.dot(phi.T, np.dot(B, phi))
def _posterior(self):
result = minimize(
fun=self._log_posterior,
hess=self._hessian,
x0=self.m_,
args=(self.alpha_, self.phi, self.t),
method='Newton-CG',
jac=True,
options={
'maxiter': self.n_iter_posterior
}
)
self.m_ = result.x
self.sigma_ = np.linalg.inv(
self._hessian(self.m_, self.alpha_, self.phi, self.t)
)
def fit(self, X, y):
"""Check target values and fit model."""
self.classes_ = np.unique(y)
n_classes = len(self.classes_)
if n_classes < 2:
raise ValueError("Need 2 or more classes.")
elif n_classes == 2:
self.t = np.zeros(y.shape)
self.t[y == self.classes_[1]] = 1
return super(RVC, self).fit(X, self.t)
else:
self.multi_ = None
self.multi_ = OneVsOneClassifier(self)
self.multi_.fit(X, y)
return self
def predict_proba(self, X):
"""Return an array of class probabilities."""
phi = self._apply_kernel(X, self.relevance_)
y = self._classify(self.m_, phi)
return np.column_stack((1-y, y))
def predict(self, X):
"""Return an array of classes for each input."""
if len(self.classes_) == 2:
y = self.predict_proba(X)
res = np.empty(y.shape[0], dtype=self.classes_.dtype)
res[y[:, 1] <= 0.5] = self.classes_[0]
res[y[:, 1] >= 0.5] = self.classes_[1]
return res
else:
return self.multi_.predict(X)
好了,下面就可以像别的sklearn库里面的包一样使用了。
我们对分类问题和回归问题都测试一下,并且和支持向量机做对比。
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
from sklearn.preprocessing import StandardScaler
from sklearn.model_selection import train_test_split
from sklearn.model_selection import KFold, StratifiedKFold
from sklearn.model_selection import GridSearchCV
from sklearn.metrics import plot_confusion_matrix
from sklearn.svm import SVC
from sklearn.svm import SVR
from sklearn.datasets import load_boston
from sklearn.datasets import load_breast_cancer
分类测试
分类我们使用经典的鸢尾花数据集
iris = load_breast_cancer() #加载数据
X = iris.data
y = iris.target
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, stratify=y, random_state=0)
scaler = StandardScaler()
scaler.fit(X_train)
X_train_s = scaler.transform(X_train)
X_test_s = scaler.transform(X_test)
支持向量机,不同核函数的效果:
#线性核函数
model = SVC(kernel="linear", random_state=123)
model.fit(X_train_s, y_train)
print(model.score(X_test_s, y_test))
#二次多项式核
model = SVC(kernel="poly", degree=2, random_state=123)
model.fit(X_train_s, y_train)
print(model.score(X_test_s, y_test))
#三次多项式
model = SVC(kernel="poly", degree=3, random_state=123)
model.fit(X_train_s, y_train)
print(model.score(X_test_s, y_test))
#径向核
model = SVC(kernel="rbf", random_state=123)
model.fit(X_train_s, y_train)
print(model.score(X_test_s, y_test))
#S核
model = SVC(kernel="sigmoid",random_state=123)
model.fit(X_train_s, y_train)
print(model.score(X_test_s, y_test))
相关向量机(RVM)效果:
model = RVC(kernel="linear")
model.fit(X_train_s, y_train)
print(model.score(X_test_s, y_test))
model = RVC(kernel="rbf")
model.fit(X_train_s, y_train)
print(model.score(X_test_s, y_test))
model = RVC(kernel="poly")
model.fit(X_train_s, y_train)
print(model.score(X_test_s, y_test))
效果差不多。
回归测试
回归使用波士顿数据集
# Support Vector Regression with Boston Housing Data
X, y = load_boston(return_X_y=True)
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=1)
scaler = StandardScaler()
scaler.fit(X_train)
X_train_s = scaler.transform(X_train)
X_test_s = scaler.transform(X_test)
支持向量机效果:(不同核函数)
#线性核函数
model = SVR(kernel="linear")
model.fit(X_train_s, y_train)
print(model.score(X_test_s, y_test))
#二次多项式核
model = SVR(kernel="poly", degree=2)
model.fit(X_train_s, y_train)
print(model.score(X_test_s, y_test))
#三次多项式
model = SVR(kernel="poly", degree=3)
model.fit(X_train_s, y_train)
print(model.score(X_test_s, y_test))
#径向核
model = SVR(kernel="rbf")
model.fit(X_train_s, y_train)
print(model.score(X_test_s, y_test))
#S核
model = SVR(kernel="sigmoid")
model.fit(X_train_s, y_train)
print(model.score(X_test_s, y_test))
相关向量机(RVM)效果:
model = RVR(kernel="linear")
model.fit(X_train_s, y_train)
print(model.score(X_test_s, y_test))
model = RVR(kernel="rbf")
model.fit(X_train_s, y_train)
print(model.score(X_test_s, y_test))
model = RVR(kernel="poly")
model.fit(X_train_s, y_train)
print(model.score(X_test_s, y_test))
可以看到,在回归问题上,相关向量机比支持向量机的效果要好。
分类用SVM,回归用RVM
当然我这里只用了两个sklearn自带的数据集测试,结论肯定有点武断,有兴趣的同学可以用于别的数据集,然后做多次K折交叉验证,进一步对比他们的效果。