- 图神经网络:拓扑数据分析的新时代
Jason_Orton
神经网络数据分析人工智能
随着图数据的广泛应用,图神经网络(GraphNeuralNetwork,GNN)作为一种强大的深度学习工具,逐渐成为机器学习领域中的一颗新星。图数据在许多现实世界问题中无处不在,诸如社交网络、交通网络、分子结构、推荐系统等都可以被建模为图结构。图神经网络通过直接处理图结构数据,能够更好地捕捉节点之间的关系信息,从而在众多任务中展现出了优异的性能。本文将深入探讨图神经网络的基本原理、常见的算法、应用
- 智算中心的核心硬件是什么?
Imagination官方博客
本文来源:游方AI智算中心,作为人工智能时代的关键基础设施,其核心硬件的构成与性能直接影响着智能计算的效率与质量。以下是对智算中心核心硬件的详细阐述:一、AI芯片AI芯片是专门为加速人工智能计算而设计的硬件,能够与各种AI算法协同工作,满足对算力的极高需求。当前主流的AI加速计算芯片包括:1、GPU(图形处理器)GPU是智算中心的算力担当,其强大的并行计算能力使其在深度学习领域大放异彩。GPU芯片
- 2025,AI变现有哪些机遇与挑战?
Imagination官方博客
人工智能
大模型的能力边界在不断拓宽,主流云端大模型普遍具备了多模态推理能力。技术路线上,也不再局限于算力堆叠,而是探索强化学习、符号推理、类脑计算等新路径。并且,投入更小、更垂直的小模型涌现,为特定领域的应用提供了更高效的解决方案。与此同时,我国大模型领域仍然存在多方面痛点,例如:云端训练成本高、高端算力存在“卡脖子”风险、优质数据匮乏、人才缺口、AI算法开源生态仍需强化、数据安全和隐私问题等等,仍是市场
- TensorFlow基础架构
humbinal
tensorflow
处理结构计算图纸Tensorflow首先要定义神经网络的结构,然后再把数据放入结构当中去运算和training.处理结构因为TensorFlow是采用数据流图(dataflowgraphs)来计算,所以首先我们得创建一个数据流流图,然后再将我们的数据(数据以张量(tensor)的形式存在)放在数据流图中计算.节点(Nodes)在图中表示数学操作,图中的线(edges)则表示在节点间相互联系的多维数
- Spark之PySpark
james二次元
大数据SparkPythonPySpark
PySpark是ApacheSpark的PythonAPI,它允许开发者使用Python编程语言进行大规模数据处理和分析。ApacheSpark是一个快速、通用、可扩展的大数据处理引擎,支持批处理、流处理、机器学习、图计算等多种数据处理模式。PySpark使得Python开发者能够利用Spark强大的分布式计算能力,处理大数据集,并执行高效的并行计算。一、PySpark核心概念1.RDD(弹性分布
- 提高数据安全性:Java 中的混合加密算法应用
码农老起
安全加密算法网络开发语言算法
目录一、混合加密算法概述二、混合加密算法的优缺点三、Java实现混合加密算法在现代信息安全领域,加密算法扮演着至关重要的角色。为了提升加密效率并确保数据的安全性,混合加密算法成为了一种常见的加密技术。本文将介绍混合加密算法的概念,并通过Java示例展示其实现方法。一、混合加密算法概述混合加密算法结合了对称加密和非对称加密的优点。它利用非对称加密算法(如RSA)来加密对称加密算法(如AES)的密钥,
- 用 AI 解决心理健康匹配难题:探索 NLP 在心理咨询领域的应用
AI在心理健康行业的机遇与挑战心理健康行业近年来增长迅速,但仍然面临诸多技术挑战:•精准匹配:如何利用AI/NLP理解用户情绪、需求、心理状态,匹配合适的心理咨询师?•数据隐私:如何在AI分析过程中保障用户数据安全,避免敏感信息泄露?•智能化vs.人性化:如何平衡算法推荐与人工咨询的个性化,避免AI过度干预?这些问题,正是我们当前研究和探索的方向!研究方向:如何用AI进行智能匹配?我们正在研究如何
- 深度学习重要论文阅读笔记 ResNet (2025.2.26)
北岛寒沫
逐界星辰2025计算机科研深度学习论文阅读笔记
文章目录问题背景数据预处理神经网络模型模型性能知识点积累英语单词积累问题背景随着神经网络变得更深(层数变多),模型的训练过程也会变得更加困难。当神经网络的深度增加,就会出现梯度消失和梯度下降现象,妨碍模型的收敛。不过,这种情况可以通过归一化的模型初始化和中间的归一化层基本解决。但是,尽管在增加了归一化技术的情况下很深的神经网络可以收敛,又出现了另外一个问题,即随着模型深度的增加,模型的准确率反而下
- 机器学习——无监督学习(k-means算法)
张起灵ovo
机器学习入门机器学习算法学习
1、K-Means聚类算法K表示超参数个数,如分成几个类别,K值就取多少。若无需求,可使用网格搜索找到最佳的K。步骤:1、随机设置K个特征空间内的点作为初始聚类中心;2、对于其他每个点计算到K个中心的距离,未知的点选择最近的一个聚类中心点作为标记种类;3、接着对标记的聚类中心之后,重新计算出每个聚类的中心点(平均值);4、如果计算得出的新中心点与原中心点一样,那么结束,否则执行第二步。means表
- pandas series 相加_Numpy和Pandas教程
weixin_39778393
pandasseries相加
Pandas简介-python数据分析library-基于numpy(对ndarray的操作)-有一种用python做Excel/SQL/R的感觉-为什么要学习pandas?-pandas和机器学习的关系,数据预处理,featureengineering。-pandas的DataFrame结构和大家在大数据部分见到的spark中的DataFrame非常类似。目录-numpy速成-Series-Da
- 仿12306项目(1)
容器( ु⁎ᴗ_ᴗ⁎)ु.。oO
java
雪花算法为了高效的生成有序且唯一的ID,可以采用雪花算法来进行实现,为什么不去采用UUID呢?首先,UUID是一个128位的值,相较于雪花算法生成的64位的值,长了很多,在数据库中存储时耗费的时间更长,UUID生成后没有顺序关系,导致它不适合做主键,雪花算法排序具有可读性,在一些状况下更容易地追踪。雪花算法的原理IdUtil.getSnowflake有两个参数,第一个时数据中心的编号,第二个时机器
- 深度学习-自学手册
谁用了尧哥这个昵称
AI深度学习
人工智能机器学习神经网络前馈神经网络:没有回路的反馈神经网络:有回路的DNN深度神经网络CNN卷积神经网络RNN循环神经网络LSTM是RNN的一种,长短期记忆网络自然语言处理神经网络神经元-分类器Hebb学习方法,随机–类似SGD一篇神经网络入门BP反向传播,表示很复杂的函数/空间分布从最后一层往前调整参数,反复循环该操作y=a(wx+b)x输入y输出a激活函
- BY组态-低代码web可视化组件
万维——组态
低代码前端物联网运维数学建模编辑器
简介BY组态是集实时数据展示、动态交互等一体的全功能可视化平台。帮助物联网、工业互联网、电力能源、水利工程、智慧农业、智慧医疗、智慧城市等场景快速实现数字孪生、大屏可视化、Web组态、SCADA等解决方案。具有实时监控、多样、变化、动态交互、高效、可扩展、支持自动算法、跨平台等特点,最大程度减少研发和运维的成本,并致力于普通业务人员0代码开发实现数字孪生、大屏可视化、Web组态、SCADA等解决方
- 数业有道,智赢未来:派可数据 BI 助力企业数字化升级、高质量增长
派可数据
数据要素数据仓库商业智能数据分析信息可视化大数据商业智能BI数据仓库
前言当前,企业数字化转型经过初始探索阶段,各行各业进入高速发展百花齐放的创新应用新阶段。创新应用阶段的核心是企业应用先进的数字技术和工具,对企业多年在全领域积累的各类数据,包括财务、业务、生产、设计、设备、工艺等结构化数据,以及非结构、半结构的日志、音、视数据,通过算法深度分析并挖掘数据的价值,以此来改变和提升企业、组织或个人的运营模式、业务流程、管理方式以及价值创造能力,进而支撑企业战略目标的实
- 自然语言处理(Natural Language Processing, NLP)的主要应用及核心技术
彬彬侠
自然语言处理NLP自然语言处理
自然语言处理(NLP)是人工智能(AI)的一个重要分支,旨在让计算机能够理解、生成和处理人类语言。NLP在多个领域有着广泛的应用,并结合了多种先进的技术,包括机器学习(ML)、深度学习(DL)、统计模型以及规则方法。1.自然语言处理的主要应用1.1机器翻译(MachineTranslation,MT)应用场景:在线翻译:GoogleTranslate、DeepL、BaiduTranslate。跨语
- DeepSeek 高阶应用技术详解(4)
Evaporator Core
#DeepSeek快速入门DeepSeek进阶开发与应用deepseek
1.引言在前三篇中,我们探讨了DeepSeek的基础功能、分布式训练、模型优化、模型解释性、超参数优化以及AutoML的应用。本篇将深入探讨DeepSeek在时间序列分析、图神经网络(GNN)和推荐系统中的应用。这些领域是深度学习的前沿方向,具有广泛的实际应用价值。2.DeepSeek在时间序列分析中的应用2.1时间序列分析简介时间序列分析是处理时间相关数据的重要技术,广泛应用于金融、气象、医疗等
- leetcode 41. 缺失的第一个正数
萌の鱼
leetcode算法c++数据结构
题目如下数据范围观察数据范围n方复杂度的算法铁定不行了。但是我们可以另辟蹊径:若一个数组长度为n且这个数组的数都是正常的(例如n=3[1,2,3])这样即返回答案最大为n+1若出现不正常数(例如n=3[1,2,5][1,1,2])那么显然答案应该是3是小于n+1的所以我们不妨这样推断如果这个数组正常那么每个数必然能刚好对应一个位置就像上面的正常数组1在02在13在2即出现nums[i]==i+1。
- 机器学习数学基础:32.复本信度
@心都
机器学习算法人工智能
复本信度(Parallel-FormsReliability)深度详解教程专为小白打造,零基础也能轻松掌握一、深度解读复本信度复本信度,也被称为“平行测验信度”,其核心要义是借助两个虽然不同但在各方面等效的测验版本,对同一批受测者进行多次测量,然后对测量结果的一致性程度展开评估。从本质上讲,它是衡量测验稳定性的重要指标,能够有效减少因题目重复出现而致使受测者产生练习或记忆效应,进而影响测验结果真实
- 机器学习中的过拟合、欠拟合与正则化
喜-喜
人工智能机器学习人工智能
在机器学习的世界里,过拟合与欠拟合是模型训练过程中常常会遇到的两大问题,而正则化则是应对过拟合的重要手段。理解它们对于构建高性能的机器学习模型至关重要。一、过拟合与欠拟合(一)过拟合 定义:过拟合指的是模型在训练数据上表现得非常好,几乎能完美地拟合训练数据中的每一个细节,但在测试数据或新数据上却表现很差,泛化能力极低。简单来说,就是模型过度学习了训练数据中的噪声和细节,而忽略了数据背后的真实
- 如何选择AI外呼产品?技术人必看的五大核心指标
MARS_AI_
人工智能自然语言处理语音识别信息与通信nlp
随着AI技术的快速发展,AI外呼产品逐渐成为企业客户沟通与业务拓展的利器。然而,面对市场上琳琅满目的解决方案,如何选择一款真正适合自身业务的AI外呼产品?本文从技术视角出发,结合实际应用场景,总结出五大核心评估指标,助你科学决策。一、技术核心:从算法到落地的关键AI外呼产品的核心能力取决于其底层技术架构,尤其是自然语言处理(NLP)与大模型技术的应用水平。以下是不同技术方案的对比:技术选型建议:•
- 【漫话机器学习系列】106.线性激活函数(Linear Activation Function)
IT古董
漫话机器学习系列专辑机器学习人工智能激活函数
1.什么是线性激活函数?线性激活函数是一种最简单的激活函数,数学表达式为:即输出与输入保持完全线性关系。这意味着对于任何输入值x,其输出将等于输入值本身,函数图像为一条通过原点的直线。在神经网络中,激活函数的作用是将网络的线性组合映射到某种非线性输出。传统的线性激活函数常用于一些特定场景,比如回归问题,其中预测的目标值与输入特征之间可能存在线性关系。2.线性激活函数的特点线性关系:与其他常见的激活
- 数据结构2---------->时间复杂度
free-elcmacom
数据结构
一、算法的效率:1.如何正确的衡量一个算法的好坏呢?请看下面的斐波拉契数列:我先简单介绍一下斐波拉契数列:斐波那契数列(黄金分割数列),它是由数学家莱昂纳多·斐波那契(LeonardodaFibonacci)以兔子繁殖为例子而引入,故又称为“兔子数列”,指的是这样一个数列:0、1、1、2、3、5、8、13、21、34、……即这个数列从第三项开始,每一项都等于前两项之和。longlongFib(in
- 快速排序,折半算法
zm
算法java数据结构
快速排序#include#includeintone_kp(int*arr,intlow,inthigh){intbase=arr[low];while(low=base){high--;}arr[low]=arr[high];//lowwhile(lowinthalf_search(int*arr,intlow,inthigh,intvalue){//当数据中只有一个数时,也要进行折半查找whi
- SLAM文献之-IMLS-SLAM: scan-to-model matching based on 3D data
点云SLAM
SLAM3d机器学习SLAMIMLSICP
IMLS-SLAM算法原理详解一、算法概述IMLS-SLAM(ImplicitMovingLeastSquaresSLAM)是一种基于3D激光雷达数据的低漂移SLAM算法,由Jean-EmmanuelDeschaud等人在2018年提出。其核心思想是通过隐式移动最小二乘(IMLS)曲面建模实现scan-to-model的匹配框架,显著提升了定位与建图的精度和鲁棒性。该算法在无闭环检测的情况下,4公
- 行为型模式 - 模板方法模式 (Template Method Pattern)
_真相只有一个
Java设计模式模板方法模式设计模式
行为型模式-模板方法模式(TemplateMethodPattern)模板方法模式定义了一个操作中的算法骨架,将一些步骤的实现延迟到子类中。使得子类可以在不改变算法结构的情况下,重新定义算法中的某些步骤。假设有一个饮品制作流程,包括烧水、冲泡/酿造、倒入杯子、添加调料等步骤。不同的饮品(如咖啡和茶)在冲泡/酿造和添加调料这两个步骤可能有所不同,而烧水和倒入杯子步骤是通用的。可以使用模板方法模式来实
- 行为型模式 - 策略模式 (Strategy Pattern)
_真相只有一个
Java设计模式策略模式设计模式
行为型模式-策略模式(StrategyPattern)策略模式定义了一系列的算法,并将每个算法封装起来,使它们可以相互替换。策略模式让算法的变化独立于使用算法的客户端。以下是几个策略模式的经典案例。//一个经典的例子,支付方式、微信、支付宝、银联//1.策略接口publicinterfacePaymentStrategy{voidpay(doubleamount);}//2.具体策略实现//微信p
- Windows环境安装torch_geometric库报错
一穷二白到年薪百万
报错专栏pythonanacondapip
Windows下安装,最近在学习图神经网络需要用到geometric_torch结果怎么装都装不上。查阅了各种资料尝试了各种方法,有的说是因为visualc++buildtools没有安装博客链接,有的说升级conda甚至还有的说卸载pytorch重装命,令行如下:condaupdate#升级conda所有的包官网下载地址:https://pypi.org/project/torch-geom
- 通过Python编程语言实现“机器学习”小项目教程案例
指尖下的技术
DeepSeekpython机器学习开发语言
以下为你提供一个使用Python实现简单机器学习项目的教程案例,此案例将使用鸢尾花数据集进行分类任务,运用经典的支持向量机(SVM)算法。步骤1:环境准备首先,你要确保已经安装了必要的Python库,像scikit-learn、pandas、matplotlib和seaborn。可以使用以下命令进行安装:pipinstallscikit-learnpandasmatplotlibseaborn步骤
- CSP-J/S复赛算法 动态规划初步
人才程序员
CSP-J算法动态规划深度优先c++noiCSP-J/S
文章目录前言动态规划动态规划常见形式动态规划求最值的几个例子1.**背包问题**2.**最短路径问题**3.**最小硬币找零问题**4.**最长递增子序列**总结最优子结构举个简单的例子其他例子条件DP的核心就是穷举具体解释递归的算法时间复杂度dp数组的迭代解法通俗易懂的解释比喻状态转移方程详解状态转移方程中的状态概念通俗易懂的解释:举个例子:状态总结:DP的无后效性通俗易懂的解释举个例子特点总结
- 数据安全_笔记系列09_人工智能(AI)与机器学习(ML)在数据安全中的深度应用
宁宁可可
数据安全数据安全
数据安全_笔记系列09_人工智能(AI)与机器学习(ML)在数据安全中的深度应用人工智能与机器学习技术通过自动化、智能化的数据分析,显著提升了数据分类、威胁检测的精度与效率,尤其在处理非结构化数据、复杂威胁场景和降低误报/漏报率方面表现突出。以下从技术原理、应用场景、实施流程、工具与案例展开解析:一、AI/ML如何提升数据安全能力?1.核心价值复杂数据识别:解析非结构化数据(文本、图像、音视频)中
- xml解析
小猪猪08
xml
1、DOM解析的步奏
准备工作:
1.创建DocumentBuilderFactory的对象
2.创建DocumentBuilder对象
3.通过DocumentBuilder对象的parse(String fileName)方法解析xml文件
4.通过Document的getElem
- 每个开发人员都需要了解的一个SQL技巧
brotherlamp
linuxlinux视频linux教程linux自学linux资料
对于数据过滤而言CHECK约束已经算是相当不错了。然而它仍存在一些缺陷,比如说它们是应用到表上面的,但有的时候你可能希望指定一条约束,而它只在特定条件下才生效。
使用SQL标准的WITH CHECK OPTION子句就能完成这点,至少Oracle和SQL Server都实现了这个功能。下面是实现方式:
CREATE TABLE books (
id &
- Quartz——CronTrigger触发器
eksliang
quartzCronTrigger
转载请出自出处:http://eksliang.iteye.com/blog/2208295 一.概述
CronTrigger 能够提供比 SimpleTrigger 更有具体实际意义的调度方案,调度规则基于 Cron 表达式,CronTrigger 支持日历相关的重复时间间隔(比如每月第一个周一执行),而不是简单的周期时间间隔。 二.Cron表达式介绍 1)Cron表达式规则表
Quartz
- Informatica基础
18289753290
InformaticaMonitormanagerworkflowDesigner
1.
1)PowerCenter Designer:设计开发环境,定义源及目标数据结构;设计转换规则,生成ETL映射。
2)Workflow Manager:合理地实现复杂的ETL工作流,基于时间,事件的作业调度
3)Workflow Monitor:监控Workflow和Session运行情况,生成日志和报告
4)Repository Manager:
- linux下为程序创建启动和关闭的的sh文件,scrapyd为例
酷的飞上天空
scrapy
对于一些未提供service管理的程序 每次启动和关闭都要加上全部路径,想到可以做一个简单的启动和关闭控制的文件
下面以scrapy启动server为例,文件名为run.sh:
#端口号,根据此端口号确定PID
PORT=6800
#启动命令所在目录
HOME='/home/jmscra/scrapy/'
#查询出监听了PORT端口
- 人--自私与无私
永夜-极光
今天上毛概课,老师提出一个问题--人是自私的还是无私的,根源是什么?
从客观的角度来看,人有自私的行为,也有无私的
- Ubuntu安装NS-3 环境脚本
随便小屋
ubuntu
将附件下载下来之后解压,将解压后的文件ns3environment.sh复制到下载目录下(其实放在哪里都可以,就是为了和我下面的命令相统一)。输入命令:
sudo ./ns3environment.sh >>result
这样系统就自动安装ns3的环境,运行的结果在result文件中,如果提示
com
- 创业的简单感受
aijuans
创业的简单感受
2009年11月9日我进入a公司实习,2012年4月26日,我离开a公司,开始自己的创业之旅。
今天是2012年5月30日,我忽然很想谈谈自己创业一个月的感受。
当初离开边锋时,我就对自己说:“自己选择的路,就是跪着也要把他走完”,我也做好了心理准备,准备迎接一次次的困难。我这次走出来,不管成败
- 如何经营自己的独立人脉
aoyouzi
如何经营自己的独立人脉
独立人脉不是父母、亲戚的人脉,而是自己主动投入构造的人脉圈。“放长线,钓大鱼”,先行投入才能产生后续产出。 现在几乎做所有的事情都需要人脉。以银行柜员为例,需要拉储户,而其本质就是社会人脉,就是社交!很多人都说,人脉我不行,因为我爸不行、我妈不行、我姨不行、我舅不行……我谁谁谁都不行,怎么能建立人脉?我这里说的人脉,是你的独立人脉。 以一个普通的银行柜员
- JSP基础
百合不是茶
jsp注释隐式对象
1,JSP语句的声明
<%! 声明 %> 声明:这个就是提供java代码声明变量、方法等的场所。
表达式 <%= 表达式 %> 这个相当于赋值,可以在页面上显示表达式的结果,
程序代码段/小型指令 <% 程序代码片段 %>
2,JSP的注释
<!-- -->
- web.xml之session-config、mime-mapping
bijian1013
javaweb.xmlservletsession-configmime-mapping
session-config
1.定义:
<session-config>
<session-timeout>20</session-timeout>
</session-config>
2.作用:用于定义整个WEB站点session的有效期限,单位是分钟。
mime-mapping
1.定义:
<mime-m
- 互联网开放平台(1)
Bill_chen
互联网qq新浪微博百度腾讯
现在各互联网公司都推出了自己的开放平台供用户创造自己的应用,互联网的开放技术欣欣向荣,自己总结如下:
1.淘宝开放平台(TOP)
网址:http://open.taobao.com/
依赖淘宝强大的电子商务数据,将淘宝内部业务数据作为API开放出去,同时将外部ISV的应用引入进来。
目前TOP的三条主线:
TOP访问网站:open.taobao.com
ISV后台:my.open.ta
- 【MongoDB学习笔记九】MongoDB索引
bit1129
mongodb
索引
可以在任意列上建立索引
索引的构造和使用与传统关系型数据库几乎一样,适用于Oracle的索引优化技巧也适用于Mongodb
使用索引可以加快查询,但同时会降低修改,插入等的性能
内嵌文档照样可以建立使用索引
测试数据
var p1 = {
"name":"Jack",
"age&q
- JDBC常用API之外的总结
白糖_
jdbc
做JAVA的人玩JDBC肯定已经很熟练了,像DriverManager、Connection、ResultSet、Statement这些基本类大家肯定很常用啦,我不赘述那些诸如注册JDBC驱动、创建连接、获取数据集的API了,在这我介绍一些写框架时常用的API,大家共同学习吧。
ResultSetMetaData获取ResultSet对象的元数据信息
- apache VelocityEngine使用记录
bozch
VelocityEngine
VelocityEngine是一个模板引擎,能够基于模板生成指定的文件代码。
使用方法如下:
VelocityEngine engine = new VelocityEngine();// 定义模板引擎
Properties properties = new Properties();// 模板引擎属
- 编程之美-快速找出故障机器
bylijinnan
编程之美
package beautyOfCoding;
import java.util.Arrays;
public class TheLostID {
/*编程之美
假设一个机器仅存储一个标号为ID的记录,假设机器总量在10亿以下且ID是小于10亿的整数,假设每份数据保存两个备份,这样就有两个机器存储了同样的数据。
1.假设在某个时间得到一个数据文件ID的列表,是
- 关于Java中redirect与forward的区别
chenbowen00
javaservlet
在Servlet中两种实现:
forward方式:request.getRequestDispatcher(“/somePage.jsp”).forward(request, response);
redirect方式:response.sendRedirect(“/somePage.jsp”);
forward是服务器内部重定向,程序收到请求后重新定向到另一个程序,客户机并不知
- [信号与系统]人体最关键的两个信号节点
comsci
系统
如果把人体看做是一个带生物磁场的导体,那么这个导体有两个很重要的节点,第一个在头部,中医的名称叫做 百汇穴, 另外一个节点在腰部,中医的名称叫做 命门
如果要保护自己的脑部磁场不受到外界有害信号的攻击,最简单的
- oracle 存储过程执行权限
daizj
oracle存储过程权限执行者调用者
在数据库系统中存储过程是必不可少的利器,存储过程是预先编译好的为实现一个复杂功能的一段Sql语句集合。它的优点我就不多说了,说一下我碰到的问题吧。我在项目开发的过程中需要用存储过程来实现一个功能,其中涉及到判断一张表是否已经建立,没有建立就由存储过程来建立这张表。
CREATE OR REPLACE PROCEDURE TestProc
IS
fla
- 为mysql数据库建立索引
dengkane
mysql性能索引
前些时候,一位颇高级的程序员居然问我什么叫做索引,令我感到十分的惊奇,我想这绝不会是沧海一粟,因为有成千上万的开发者(可能大部分是使用MySQL的)都没有受过有关数据库的正规培训,尽管他们都为客户做过一些开发,但却对如何为数据库建立适当的索引所知较少,因此我起了写一篇相关文章的念头。 最普通的情况,是为出现在where子句的字段建一个索引。为方便讲述,我们先建立一个如下的表。
- 学习C语言常见误区 如何看懂一个程序 如何掌握一个程序以及几个小题目示例
dcj3sjt126com
c算法
如果看懂一个程序,分三步
1、流程
2、每个语句的功能
3、试数
如何学习一些小算法的程序
尝试自己去编程解决它,大部分人都自己无法解决
如果解决不了就看答案
关键是把答案看懂,这个是要花很大的精力,也是我们学习的重点
看懂之后尝试自己去修改程序,并且知道修改之后程序的不同输出结果的含义
照着答案去敲
调试错误
- centos6.3安装php5.4报错
dcj3sjt126com
centos6
报错内容如下:
Resolving Dependencies
--> Running transaction check
---> Package php54w.x86_64 0:5.4.38-1.w6 will be installed
--> Processing Dependency: php54w-common(x86-64) = 5.4.38-1.w6 for
- JSONP请求
flyer0126
jsonp
使用jsonp不能发起POST请求。
It is not possible to make a JSONP POST request.
JSONP works by creating a <script> tag that executes Javascript from a different domain; it is not pos
- Spring Security(03)——核心类简介
234390216
Authentication
核心类简介
目录
1.1 Authentication
1.2 SecurityContextHolder
1.3 AuthenticationManager和AuthenticationProvider
1.3.1 &nb
- 在CentOS上部署JAVA服务
java--hhf
javajdkcentosJava服务
本文将介绍如何在CentOS上运行Java Web服务,其中将包括如何搭建JAVA运行环境、如何开启端口号、如何使得服务在命令执行窗口关闭后依旧运行
第一步:卸载旧Linux自带的JDK
①查看本机JDK版本
java -version
结果如下
java version "1.6.0"
- oracle、sqlserver、mysql常用函数对比[to_char、to_number、to_date]
ldzyz007
oraclemysqlSQL Server
oracle &n
- 记Protocol Oriented Programming in Swift of WWDC 2015
ningandjin
protocolWWDC 2015Swift2.0
其实最先朋友让我就这个题目写篇文章的时候,我是拒绝的,因为觉得苹果就是在炒冷饭, 把已经流行了数十年的OOP中的“面向接口编程”还拿来讲,看完整个Session之后呢,虽然还是觉得在炒冷饭,但是毕竟还是加了蛋的,有些东西还是值得说说的。
通常谈到面向接口编程,其主要作用是把系统设计和具体实现分离开,让系统的每个部分都可以在不影响别的部分的情况下,改变自身的具体实现。接口的设计就反映了系统
- 搭建 CentOS 6 服务器(15) - Keepalived、HAProxy、LVS
rensanning
keepalived
(一)Keepalived
(1)安装
# cd /usr/local/src
# wget http://www.keepalived.org/software/keepalived-1.2.15.tar.gz
# tar zxvf keepalived-1.2.15.tar.gz
# cd keepalived-1.2.15
# ./configure
# make &a
- ORACLE数据库SCN和时间的互相转换
tomcat_oracle
oraclesql
SCN(System Change Number 简称 SCN)是当Oracle数据库更新后,由DBMS自动维护去累积递增的一个数字,可以理解成ORACLE数据库的时间戳,从ORACLE 10G开始,提供了函数可以实现SCN和时间进行相互转换;
用途:在进行数据库的还原和利用数据库的闪回功能时,进行SCN和时间的转换就变的非常必要了;
操作方法: 1、通过dbms_f
- Spring MVC 方法注解拦截器
xp9802
spring mvc
应用场景,在方法级别对本次调用进行鉴权,如api接口中有个用户唯一标示accessToken,对于有accessToken的每次请求可以在方法加一个拦截器,获得本次请求的用户,存放到request或者session域。
python中,之前在python flask中可以使用装饰器来对方法进行预处理,进行权限处理
先看一个实例,使用@access_required拦截:
?