YOLOV5从训练到部署测试NCNN安卓端部署保姆级教程

一、基础配置

  • 为防止环境差异,造成教程中部分步骤出现差异,造成部署失败,下面将组件版本列举出来。

组件

版本

anaconda

4.8.3

python

3.8.13

yolov5

6.0

System

Ubuntu 22.04.1 x86_64

System Core

5.10.102.1

gcc

11.2.0

g++

11.2.0

其中System、System Core、gcc、g++版本也许其他低版本也可以,但需自测。建议在docker中进行环境搭建。

  • 初始化系统配置
sudo apt update
sudo apt install git gcc g++ vim curl wget cmake -y

1、Anaconda

  • 下载Anaconda(如果使用Miniconda也可以从此处下载)
  • 安装完毕后初始化配置conda
conda config --set show_channel_urls yes #在用户目录下生成.condarc文件
  • 为了加快下载速度,我们可以配置大陆境内conda加速镜像。打开用户目录下的.condarc文件,编辑内部信息
channels:
  - defaults
show_channel_urls: true
default_channels:
  - https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/main
  - https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/r
  - https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/msys2
custom_channels:
  conda-forge: https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud
  msys2: https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud
  bioconda: https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud
  menpo: https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud
  pytorch: https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud
  pytorch-lts: https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud
  simpleitk: https://mirrors.tuna.tsinghua.edu.cn/anaconda/clou
  • 创建YOLO基础环境
conda create -n yolo python=3.8 # 创建一个名为yolo的python3.8环境

2、YoloV5

git clone https://github.com/ultralytics/yolov5.git # 下载yolov5源码
cd yolov5
git checkout v6.0 -b v6.0 # 切换为6.0版本
git checkout
conda activate yolo # 切换到前面创建的conda环境
  • 打开requirements.txt文件,修改其中内容
# pip install -r requirements.txt

# Base ----------------------------------------
matplotlib>=3.2.2
numpy>=1.18.5
opencv-python>=4.1.2
Pillow>=7.1.2
PyYAML>=5.3.1
requests>=2.23.0
scipy>=1.4.1
torch==1.7.1
torchvision==0.8.1
tqdm>=4.41.0

# Logging -------------------------------------
tensorboard==2.4.1
# wandb

# Plotting ------------------------------------
pandas>=1.1.4
seaborn>=0.11.0

# Export --------------------------------------
# coremltools>=4.1  # CoreML export
# onnx>=1.9.0  # ONNX export
# onnx-simplifier>=0.3.6  # ONNX simplifier
# scikit-learn==0.19.2  # CoreML quantization
# tensorflow>=2.4.1  # TFLite export
# tensorflowjs>=3.9.0  # TF.js export

# Extras --------------------------------------
# albumentations>=1.0.3
# Cython  # for pycocotools https://github.com/cocodataset/cocoapi/issues/172
# pycocotools>=2.0  # COCO mAP
# roboflow
thop  # FLOPs computation
  • 安装Yolo基础环境
pip install -r requirements.txt -i https://mirrors.aliyun.com/pypi/simple/
conda install onnx
pip install onnxsim
pip install onnx-simplifier
pip install onnxruntime

二、训练样本

  • 准备labelimg环境
conda create -n labelimg python=3.8
conda activate labelimg
conda install labelimg
labelimg

此时,系统会打开labelimg工具

  • 创建样本
  1. 我们在系统系统目录下创建metadata目录,在目录下分别创建images、labels文件夹。
  2. 将包含需要识别目标的图片全部放入到images文件夹下。
  3. 打开labelimg,点击打开文件夹(打开目录),选择images所在文件夹。
  4. 点击改变存放目录,选择labels所在文件夹
  5. 点击标记模式为yolo模式,如下图所示。

YOLOV5从训练到部署测试NCNN安卓端部署保姆级教程_第1张图片

点击查看 -> 自动保存模式,即打开自动保存模式。

  • 开始标注

labelimg快捷键:W,开启标注框。A,上一张。D,下一张。将全部图片标注完毕。(准备的单个图片不需要包含所有需要识别的类别)

  • 创建配置 xxx.yml
# 训练集,yolo会读取此文件夹下所有图片进行训练,有条件建议切分样本或者分批标注训练集、测试集、验证集。此处路径使用了相对路径,因此yolo会以 train.py 所在目录为根目录进行样本的搜索
train: ./metadata/images
# 验证集
val: ./metadata/images
# 验证集
test: ./metadata/images
# 类别个数,标注的时候共涉及到了几个类别,就填几,跟下面names下的个数相等
nc: 3
# 类别列表, 枚举所有类别, 可以直接复制 labels/classes.txt 下的所有类别,粘贴到此处,记得带引号,与classes.txt 顺序不要错
names: ["a", "b", "c"]

此处我们将训练集、验证集、测试集放到了相同位置,可能造成结果与样本拟合,我们也可以将训练集、测试集、验证集按照下面的目录结构放置样本及配置

── images // 存放所有图像数据
   ├── test // 测试集图片存放位置
   │   ├── xxx.jpg

   ├── train // 训练集图片存放位置
   │   ├── xxx.jpg

   └── val // 验证集图片存放位置
       ├── xxx.jpg

── labels // 所有标注完毕后的数据
    ├── test // 测试集标注标签文件所在位置
    │   ├── xxx.txt

    ├── train// 训练集标注标签文件所在位置
    │   ├── xxx.txt
   
    └── val// 验证集标注标签文件所在位置
        ├── xxx.txt

注意:images下样本集各自文件夹下的样本名称必须与labels下各自文件夹下的样本配置名称相同。

此处提供一个可以自动切分样本的py脚本

import os
import random
import argparse
import shutil
# 默认会从指定的目录的上级目录下的labels下查找。例如sourcepath指定为 ./dataset/images 则会认为 ./dataset/labels中存放的是所有标注完毕后的标签
LABELS_PATH = "./labels"
CLASSES_PROPERTIES = LABELS_PATH + "/classes.txt"
parser = argparse.ArgumentParser()
# 未切分的数据集地址
parser.add_argument('--source_path', type=str, help='input images path')
# 数据集划分完毕后存放的位置,不存在会自己创建
parser.add_argument('--save_path', default='./save_path', type=str, help='new train dataset path')
# parser.add_argument("--val_path", default="./val", type=str, help="new verify dataset path")
# parser.add_argument("--test_path", default="./test", type=str, help="new verify dataset path")
# 分割比例
parser.add_argument("--dataset_split_rate", default="7:2:1", type=str, help="dataset split rate, default: 7:2:1 as train:val:test")
opt = parser.parse_args()

source_path = opt.source_path

train_path = os.path.join(opt.save_path, "./images/train")
val_path = os.path.join(opt.save_path, "./images/val")
test_path = os.path.join(opt.save_path, "./images/test")

dataset_split_rate = opt.dataset_split_rate

train_dataset_rate = 0
val_dataset_rate = 0
test_dataset_rate = 0

if not os.path.exists(source_path):
	raise Exception(source_path + " not found exists")

if not os.path.exists(train_path):
	os.makedirs(train_path)

if not os.path.exists(val_path):
	os.makedirs(val_path)

if not os.path.exists(test_path):
	os.makedirs(test_path)

dataset_split_rate = dataset_split_rate.split(":")
if len(dataset_split_rate) != 3:
	raise Exception("dataset_split_rate must be third numbers exp: 7:2:1")

train_dataset_rate = dataset_split_rate[0]
val_dataset_rate = dataset_split_rate[1]
test_dataset_rate = dataset_split_rate[2]

if not train_dataset_rate.isdigit():
	raise Exception("dataset_split_rate must be third numbers exp: 7:2:1")

if not val_dataset_rate.isdigit():
	raise Exception("dataset_split_rate must be third numbers exp: 7:2:1")

if not test_dataset_rate.isdigit():
	raise Exception("dataset_split_rate must be third numbers exp: 7:2:1")

train_dataset_rate = int(train_dataset_rate)
val_dataset_rate = int(val_dataset_rate)
test_dataset_rate = int(test_dataset_rate)

if train_dataset_rate + val_dataset_rate + test_dataset_rate != 10:
	raise Exception("dataset sum rate must be 10, current val : " + str(train_dataset_rate + val_dataset_rate + test_dataset_rate))

train_dataset_rate = train_dataset_rate * 0.1
val_dataset_rate = val_dataset_rate * 0.1
test_dataset_rate = test_dataset_rate * 0.1

# 读取源数据路径
all_dataset = {}

for image in os.listdir(source_path):
	image_path = os.path.abspath(os.path.join(source_path, image))
	fname = os.path.splitext(image)[-2]
	label_path = os.path.abspath(os.path.join(source_path, "../" + LABELS_PATH + "/" + fname + '.txt'))
	all_dataset[image_path] = label_path

if len(all_dataset) < 3:
	raise Exception("dataset images number must > 3...")

image_orders = list(all_dataset.keys())

random.shuffle(image_orders)

train_dataset = {}
val_dataset = {}
test_dataset = {}

# 分割样本
train_dataset_max_index = int(train_dataset_rate * len(image_orders))
val_dataset_max_index = int(val_dataset_rate * len(image_orders))
test_dataset_max_index = int(test_dataset_rate * len(image_orders))

for k in image_orders:
	if len(train_dataset) >= train_dataset_max_index:
		if len(val_dataset) >= val_dataset_max_index:
			test_dataset[k] = all_dataset[k]
		else:
			val_dataset[k] = all_dataset[k]
	else:
		train_dataset[k] = all_dataset[k]

# 保存训练集

for f in train_dataset.keys():
	f = str(f)
	shutil.copy(f, train_path)
	clas_path = os.path.abspath(os.path.join(train_path, "../../" + LABELS_PATH + "/train"))
	if not os.path.exists(clas_path):
		os.makedirs(clas_path)
	shutil.copy(train_dataset[f], clas_path)


for f in val_dataset.keys():
	f = str(f)
	shutil.copy(f, val_path)
	clas_path = os.path.abspath(os.path.join(train_path, "../../" + LABELS_PATH + "/val"))
	if not os.path.exists(clas_path):
		os.makedirs(clas_path)
	shutil.copy(val_dataset[f], clas_path)

for f in test_dataset.keys():
	f = str(f)
	shutil.copy(f, test_path)
	clas_path = os.path.abspath(os.path.join(train_path, "../../" + LABELS_PATH + "/test"))
	if not os.path.exists(clas_path):
		os.makedirs(clas_path)
	shutil.copy(test_dataset[f], clas_path)

执行分割

# source_path 所有的样本图片所在目录。save_path:分割完毕后的图片存放目录。data_split_rate:样本切分比例(训练集:验证集:测试集)
python xxx.py --source_path ./metadata/images --save_path ./dataset --dataset_split_rate 7:2:1

样本被保存到了 dataset下,我们在dataset下创建xxx.yaml配置文件。

# 例如根目录名称为dataset
train: ./dataset/images/train
# 验证集
val: ./dataset/images/val
# 测试集
test: ./dataset/images/test
# 类别个数,标注的时候共涉及到了几个类别,就填几
nc: 3 
# 类别列表, 枚举所有类别, 可以直接复制 labels/classes.txt 下的所有类别,粘贴到此处,记得带引号,与ckasses.txt 顺序不要错
names: ["a", "b", "c"]
  • 训练样本
conda activate yolo
 # 进入yolov5源代码目录
cd yolov5
# 手动下载基础模型,指定为6.0版本
wget https://github.com/ultralytics/yolov5/releases/download/v6.0/yolov5s.pt
# 测试模型,执行完毕后,控制台会输出推理结果,Results saved to runs/detect/xxx 打开此文件夹,查看推理完毕后的结果是否正常
python detect.py --weights yolov5s.pt --img 640 --conf 0.25 --source data/images/
# 开始训练, 注意 --data 后参数,指向上面创建的yaml文件, 训练完毕后,系统会提示样本保存的目录:Optimizer stripped from runs/train/exp/weights/xxx.pt 
python train.py --img 640 --batch 50 --epochs 100 --data ../metadata/xxx.yaml --weights yolov5s.pt --nosave --cache
# 如果出现 requirements: tensorboard>=2.4.1 not found and is required by YOLOv5,手动执行下面的命令
pip install tensorboard==2.4.1
# 测试模型是否正常 --weights 为训练完毕后的模型文件, --img 同训练时 img参数 --conf 最低置信度,当分值低于此分数时,不在图片中标注。--source 需要被推理的图片所在目录
python detect.py --weights runs/train/exp/weights/xxx.pt --img 640 --conf 0.25 --source data/images/
  • 检出为ncnn可用模型
# 检出为onnx模型,注意weights指向上一步训练出来的模型
python export.py --weights ./run/train/exp/weights/xxx.pt --img 640 640 --batch 1 --train --simplify --include onnx --opset 11
# 简化onnx模型
python -m onnxsim ./run/train/exp/weights/xxx.onnx ./run/train/exp/weights/yolov5s-sim.onnx
# 转换为ncnn模型,可以打开此网站 https://convertmodel.com/ 选择onnx转ncnn,如果自行编译了ncnn,可以打开install/bin 执行下边的命令
./onnx2ncnn ./run/train/exp/weights/yolov5s-sim.onnx ./run/train/exp/weights/yolov5s.param ./run/train/exp/weights/yolov5s.bin
  • 修改配置

打开生成的yolov5s.param文件,修改Reshape参数,将0=6400、1600、400全部改为 0=-1

YOLOV5从训练到部署测试NCNN安卓端部署保姆级教程_第2张图片

 如下图

YOLOV5从训练到部署测试NCNN安卓端部署保姆级教程_第3张图片

 记录三组Permute数值的倒数第二列信息,如下图,例如我的样本配置结果为 "output", "365", "385"。如果你的Permute倒数第二列参数不是纯数值(除output之外),此时即代表后面所有的步骤都可能出现无法控制的结果,请重新开始训练,及检查你的yolo版本。

YOLOV5从训练到部署测试NCNN安卓端部署保姆级教程_第4张图片

 三、安卓端部署

  • 打开Android Studio项目,创建或打开一个项目,切换项目显示模式为project

YOLOV5从训练到部署测试NCNN安卓端部署保姆级教程_第5张图片

  • 创建模块,模块类型选择Android Native Library,注意选择c++11

YOLOV5从训练到部署测试NCNN安卓端部署保姆级教程_第6张图片

  • 点击Android Studio工具栏 Tools -> SDK Manager,检查cmake 3.10.2是否已安装,如果没有安装,请安装此工具

YOLOV5从训练到部署测试NCNN安卓端部署保姆级教程_第7张图片

  • 修改插件目录下 src -> main -> cpp -> CMakeLists.txt文件。
project(yolov5ncnn) # 记录此名称,建议设置为插件名称

cmake_minimum_required(VERSION 3.4.1)

set(ncnn_DIR ${CMAKE_SOURCE_DIR}/ncnnvulkan/${ANDROID_ABI}/lib/cmake/ncnn)
find_package(ncnn REQUIRED)
# yolov5ncnn 参数与上名称对应,yolov5ncnn_jni.cpp即为模块创建时,自动创建在与CMakeLists.txt 平级的cpp文件,当然也可以后面手动创建
add_library(yolov5ncnn SHARED yolov5ncnn_jni.cpp)
# yolov5ncnn同上,下边两个参数不变
target_link_libraries(yolov5ncnn
    ncnn

    jnigraphics
)

其中ncnnvulkan需要自行下载编译,或到此下载发行包,选择ncnn-xxx-android-vulkan.zip。如果github打不开,请在此下载(希望大家在此处下载,创作不易,支持一下)。

将ncnnvulkan依赖放入与CMakeLists.txt平级目录,结构如下

ncnnvulkan
    ├─arm64-v8a
    │  ├─include
    │  │  ├─glslang
    │  │  │  ├─Include
    │  │  │  ├─MachineIndependent
    │  │  │  │  └─preprocessor
    │  │  │  ├─Public
    │  │  │  └─SPIRV
    │  │  └─ncnn
    │  └─lib
    │      └─cmake
    │          └─ncnn
    ├─armeabi-v7a
    │  ├─include
    │  │  ├─glslang
    │  │  │  ├─Include
    │  │  │  ├─MachineIndependent
    │  │  │  │  └─preprocessor
    │  │  │  ├─Public
    │  │  │  └─SPIRV
    │  │  └─ncnn
    │  └─lib
    │      └─cmake
        │  │  ├─Include
        │  │  ├─MachineIndependent
        │  │  │  └─preprocessor
        │  │  ├─Public
        │  │  └─SPIRV
        │  └─ncnn
        └─lib
            └─cmake
                └─ncnn
CMakeLists.txt
  • 修改与CMakeLists.txt平级的yolov5ncnn_jni.cpp文件(CMakeLists.txt中指定的cpp文件)
// Tencent is pleased to support the open source community by making ncnn available.
//
// Copyright (C) 2020 THL A29 Limited, a Tencent company. All rights reserved.
//
// Licensed under the BSD 3-Clause License (the "License"); you may not use this file except
// in compliance with the License. You may obtain a copy of the License at
//
// https://opensource.org/licenses/BSD-3-Clause
//
// Unless required by applicable law or agreed to in writing, software distributed
// under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR
// CONDITIONS OF ANY KIND, either express or implied. See the License for the
// specific language governing permissions and limitations under the License.

#include 
#include 
#include 

#include 

#include 
#include 

// ncnn
#include "layer.h"
#include "net.h"
#include "benchmark.h"

static ncnn::UnlockedPoolAllocator g_blob_pool_allocator;
static ncnn::PoolAllocator g_workspace_pool_allocator;

static ncnn::Net yolov5;

class YoloV5Focus : public ncnn::Layer
{
public:
    YoloV5Focus()
    {
        one_blob_only = true;
    }

    virtual int forward(const ncnn::Mat& bottom_blob, ncnn::Mat& top_blob, const ncnn::Option& opt) const
    {
        int w = bottom_blob.w;
        int h = bottom_blob.h;
        int channels = bottom_blob.c;

        int outw = w / 2;
        int outh = h / 2;
        int outc = channels * 4;

        top_blob.create(outw, outh, outc, 4u, 1, opt.blob_allocator);
        if (top_blob.empty())
            return -100;

        #pragma omp parallel for num_threads(opt.num_threads)
        for (int p = 0; p < outc; p++)
        {
            const float* ptr = bottom_blob.channel(p % channels).row((p / channels) % 2) + ((p / channels) / 2);
            float* outptr = top_blob.channel(p);

            for (int i = 0; i < outh; i++)
            {
                for (int j = 0; j < outw; j++)
                {
                    *outptr = *ptr;

                    outptr += 1;
                    ptr += 2;
                }

                ptr += w;
            }
        }

        return 0;
    }
};

DEFINE_LAYER_CREATOR(YoloV5Focus)

struct Object
{
    float x;
    float y;
    float w;
    float h;
    int label;
    float prob;
};

static inline float intersection_area(const Object& a, const Object& b)
{
    if (a.x > b.x + b.w || a.x + a.w < b.x || a.y > b.y + b.h || a.y + a.h < b.y)
    {
        // no intersection
        return 0.f;
    }

    float inter_width = std::min(a.x + a.w, b.x + b.w) - std::max(a.x, b.x);
    float inter_height = std::min(a.y + a.h, b.y + b.h) - std::max(a.y, b.y);

    return inter_width * inter_height;
}

static void qsort_descent_inplace(std::vector& faceobjects, int left, int right)
{
    int i = left;
    int j = right;
    float p = faceobjects[(left + right) / 2].prob;

    while (i <= j)
    {
        while (faceobjects[i].prob > p)
            i++;

        while (faceobjects[j].prob < p)
            j--;

        if (i <= j)
        {
            // swap
            std::swap(faceobjects[i], faceobjects[j]);

            i++;
            j--;
        }
    }

    #pragma omp parallel sections
    {
        #pragma omp section
        {
            if (left < j) qsort_descent_inplace(faceobjects, left, j);
        }
        #pragma omp section
        {
            if (i < right) qsort_descent_inplace(faceobjects, i, right);
        }
    }
}

static void qsort_descent_inplace(std::vector& faceobjects)
{
    if (faceobjects.empty())
        return;

    qsort_descent_inplace(faceobjects, 0, faceobjects.size() - 1);
}

static void nms_sorted_bboxes(const std::vector& faceobjects, std::vector& picked, float nms_threshold)
{
    picked.clear();

    const int n = faceobjects.size();

    std::vector areas(n);
    for (int i = 0; i < n; i++)
    {
        areas[i] = faceobjects[i].w * faceobjects[i].h;
    }

    for (int i = 0; i < n; i++)
    {
        const Object& a = faceobjects[i];

        int keep = 1;
        for (int j = 0; j < (int)picked.size(); j++)
        {
            const Object& b = faceobjects[picked[j]];

            // intersection over union
            float inter_area = intersection_area(a, b);
            float union_area = areas[i] + areas[picked[j]] - inter_area;
            // float IoU = inter_area / union_area
            if (inter_area / union_area > nms_threshold)
                keep = 0;
        }

        if (keep)
            picked.push_back(i);
    }
}

static inline float sigmoid(float x)
{
    return static_cast(1.f / (1.f + exp(-x)));
}

static void generate_proposals(const ncnn::Mat& anchors, int stride, const ncnn::Mat& in_pad, const ncnn::Mat& feat_blob, float prob_threshold, std::vector& objects)
{
    const int num_grid = feat_blob.h;

    int num_grid_x;
    int num_grid_y;
    if (in_pad.w > in_pad.h)
    {
        num_grid_x = in_pad.w / stride;
        num_grid_y = num_grid / num_grid_x;
    }
    else
    {
        num_grid_y = in_pad.h / stride;
        num_grid_x = num_grid / num_grid_y;
    }

    const int num_class = feat_blob.w - 5;

    const int num_anchors = anchors.w / 2;

    for (int q = 0; q < num_anchors; q++)
    {
        const float anchor_w = anchors[q * 2];
        const float anchor_h = anchors[q * 2 + 1];

        const ncnn::Mat feat = feat_blob.channel(q);

        for (int i = 0; i < num_grid_y; i++)
        {
            for (int j = 0; j < num_grid_x; j++)
            {
                const float* featptr = feat.row(i * num_grid_x + j);

                // find class index with max class score
                int class_index = 0;
                float class_score = -FLT_MAX;
                for (int k = 0; k < num_class; k++)
                {
                    float score = featptr[5 + k];
                    if (score > class_score)
                    {
                        class_index = k;
                        class_score = score;
                    }
                }

                float box_score = featptr[4];

                float confidence = sigmoid(box_score) * sigmoid(class_score);

                if (confidence >= prob_threshold)
                {
                    // yolov5/models/yolo.py Detect forward
                    // y = x[i].sigmoid()
                    // y[..., 0:2] = (y[..., 0:2] * 2. - 0.5 + self.grid[i].to(x[i].device)) * self.stride[i]  # xy
                    // y[..., 2:4] = (y[..., 2:4] * 2) ** 2 * self.anchor_grid[i]  # wh

                    float dx = sigmoid(featptr[0]);
                    float dy = sigmoid(featptr[1]);
                    float dw = sigmoid(featptr[2]);
                    float dh = sigmoid(featptr[3]);

                    float pb_cx = (dx * 2.f - 0.5f + j) * stride;
                    float pb_cy = (dy * 2.f - 0.5f + i) * stride;

                    float pb_w = pow(dw * 2.f, 2) * anchor_w;
                    float pb_h = pow(dh * 2.f, 2) * anchor_h;

                    float x0 = pb_cx - pb_w * 0.5f;
                    float y0 = pb_cy - pb_h * 0.5f;
                    float x1 = pb_cx + pb_w * 0.5f;
                    float y1 = pb_cy + pb_h * 0.5f;

                    Object obj;
                    obj.x = x0;
                    obj.y = y0;
                    obj.w = x1 - x0;
                    obj.h = y1 - y0;
                    obj.label = class_index;
                    obj.prob = confidence;

                    objects.push_back(obj);
                }
            }
        }
    }
}

extern "C" {

// FIXME DeleteGlobalRef is missing for objCls
static jclass objCls = NULL;
static jmethodID constructortorId;
static jfieldID xId;
static jfieldID yId;
static jfieldID wId;
static jfieldID hId;
static jfieldID labelId;
static jfieldID probId;

JNIEXPORT jint JNI_OnLoad(JavaVM* vm, void* reserved)
{
    __android_log_print(ANDROID_LOG_DEBUG, "YoloV5Ncnn", "JNI_OnLoad");

    ncnn::create_gpu_instance();

    return JNI_VERSION_1_4;
}

JNIEXPORT void JNI_OnUnload(JavaVM* vm, void* reserved)
{
    __android_log_print(ANDROID_LOG_DEBUG, "YoloV5Ncnn", "JNI_OnUnload");

    ncnn::destroy_gpu_instance();
}

// public native boolean Init(AssetManager mgr);
JNIEXPORT jboolean JNICALL Java_com_tencent_yolov5ncnn_YoloV5Ncnn_Init(JNIEnv* env, jobject thiz, jobject assetManager)
{
    ncnn::Option opt;
    opt.lightmode = true;
    opt.num_threads = 4;
    opt.blob_allocator = &g_blob_pool_allocator;
    opt.workspace_allocator = &g_workspace_pool_allocator;
    opt.use_packing_layout = true;

    // use vulkan compute
    if (ncnn::get_gpu_count() != 0)
        opt.use_vulkan_compute = true;

    AAssetManager* mgr = AAssetManager_fromJava(env, assetManager);

    yolov5.opt = opt;

    yolov5.register_custom_layer("YoloV5Focus", YoloV5Focus_layer_creator);

    // init param
    {
        int ret = yolov5.load_param(mgr, "yolov5s.param");
        if (ret != 0)
        {
            __android_log_print(ANDROID_LOG_DEBUG, "YoloV5Ncnn", "load_param failed");
            return JNI_FALSE;
        }
    }

    // init bin
    {
        int ret = yolov5.load_model(mgr, "yolov5s.bin");
        if (ret != 0)
        {
            __android_log_print(ANDROID_LOG_DEBUG, "YoloV5Ncnn", "load_model failed");
            return JNI_FALSE;
        }
    }

    // init jni glue
    jclass localObjCls = env->FindClass("com/tencent/yolov5ncnn/YoloV5Ncnn$Obj");
    objCls = reinterpret_cast(env->NewGlobalRef(localObjCls));

    constructortorId = env->GetMethodID(objCls, "", "(Lcom/tencent/yolov5ncnn/YoloV5Ncnn;)V");

    xId = env->GetFieldID(objCls, "x", "F");
    yId = env->GetFieldID(objCls, "y", "F");
    wId = env->GetFieldID(objCls, "w", "F");
    hId = env->GetFieldID(objCls, "h", "F");
    labelId = env->GetFieldID(objCls, "label", "Ljava/lang/String;");
    probId = env->GetFieldID(objCls, "prob", "F");

    return JNI_TRUE;
}

// public native Obj[] Detect(Bitmap bitmap, boolean use_gpu);
JNIEXPORT jobjectArray JNICALL Java_com_tencent_yolov5ncnn_YoloV5Ncnn_Detect(JNIEnv* env, jobject thiz, jobject bitmap, jboolean use_gpu)
{
    if (use_gpu == JNI_TRUE && ncnn::get_gpu_count() == 0)
    {
        return NULL;
        //return env->NewStringUTF("no vulkan capable gpu");
    }

    double start_time = ncnn::get_current_time();

    AndroidBitmapInfo info;
    AndroidBitmap_getInfo(env, bitmap, &info);
    const int width = info.width;
    const int height = info.height;
    if (info.format != ANDROID_BITMAP_FORMAT_RGBA_8888)
        return NULL;

    // ncnn from bitmap
    const int target_size = 640;

    // letterbox pad to multiple of 32
    int w = width;
    int h = height;
    float scale = 1.f;
    if (w > h)
    {
        scale = (float)target_size / w;
        w = target_size;
        h = h * scale;
    }
    else
    {
        scale = (float)target_size / h;
        h = target_size;
        w = w * scale;
    }

    ncnn::Mat in = ncnn::Mat::from_android_bitmap_resize(env, bitmap, ncnn::Mat::PIXEL_RGB, w, h);

    // pad to target_size rectangle
    // yolov5/utils/datasets.py letterbox
    int wpad = (w + 31) / 32 * 32 - w;
    int hpad = (h + 31) / 32 * 32 - h;
    ncnn::Mat in_pad;
    ncnn::copy_make_border(in, in_pad, hpad / 2, hpad - hpad / 2, wpad / 2, wpad - wpad / 2, ncnn::BORDER_CONSTANT, 114.f);

    // yolov5
    std::vector objects;
    {
        const float prob_threshold = 0.25f;
        const float nms_threshold = 0.45f;

        const float norm_vals[3] = {1 / 255.f, 1 / 255.f, 1 / 255.f};
        in_pad.substract_mean_normalize(0, norm_vals);

        ncnn::Extractor ex = yolov5.create_extractor();

        ex.set_vulkan_compute(use_gpu);

        ex.input("images", in_pad);

        std::vector proposals;

        // anchor setting from yolov5/models/yolov5s.yaml

        // stride 8
        {
            ncnn::Mat out;
            ex.extract("output", out);

            ncnn::Mat anchors(6);
            anchors[0] = 10.f;
            anchors[1] = 13.f;
            anchors[2] = 16.f;
            anchors[3] = 30.f;
            anchors[4] = 33.f;
            anchors[5] = 23.f;

            std::vector objects8;
            generate_proposals(anchors, 8, in_pad, out, prob_threshold, objects8);

            proposals.insert(proposals.end(), objects8.begin(), objects8.end());
        }

        // stride 16
        {
            ncnn::Mat out;
            ex.extract("365", out);

            ncnn::Mat anchors(6);
            anchors[0] = 30.f;
            anchors[1] = 61.f;
            anchors[2] = 62.f;
            anchors[3] = 45.f;
            anchors[4] = 59.f;
            anchors[5] = 119.f;

            std::vector objects16;
            generate_proposals(anchors, 16, in_pad, out, prob_threshold, objects16);

            proposals.insert(proposals.end(), objects16.begin(), objects16.end());
        }

        // stride 32
        {
            ncnn::Mat out;
            ex.extract("385", out);

            ncnn::Mat anchors(6);
            anchors[0] = 116.f;
            anchors[1] = 90.f;
            anchors[2] = 156.f;
            anchors[3] = 198.f;
            anchors[4] = 373.f;
            anchors[5] = 326.f;

            std::vector objects32;
            generate_proposals(anchors, 32, in_pad, out, prob_threshold, objects32);

            proposals.insert(proposals.end(), objects32.begin(), objects32.end());
        }

        // sort all proposals by score from highest to lowest
        qsort_descent_inplace(proposals);

        // apply nms with nms_threshold
        std::vector picked;
        nms_sorted_bboxes(proposals, picked, nms_threshold);

        int count = picked.size();

        objects.resize(count);
        for (int i = 0; i < count; i++)
        {
            objects[i] = proposals[picked[i]];

            // adjust offset to original unpadded
            float x0 = (objects[i].x - (wpad / 2)) / scale;
            float y0 = (objects[i].y - (hpad / 2)) / scale;
            float x1 = (objects[i].x + objects[i].w - (wpad / 2)) / scale;
            float y1 = (objects[i].y + objects[i].h - (hpad / 2)) / scale;

            // clip
            x0 = std::max(std::min(x0, (float)(width - 1)), 0.f);
            y0 = std::max(std::min(y0, (float)(height - 1)), 0.f);
            x1 = std::max(std::min(x1, (float)(width - 1)), 0.f);
            y1 = std::max(std::min(y1, (float)(height - 1)), 0.f);

            objects[i].x = x0;
            objects[i].y = y0;
            objects[i].w = x1 - x0;
            objects[i].h = y1 - y0;
        }
    }

    // objects to Obj[]
    static const char* class_names[] = {
            "bag", "task_info_area", "task_single_trigger", "task_success"
    };

    jobjectArray jObjArray = env->NewObjectArray(objects.size(), objCls, NULL);

    for (size_t i=0; iNewObject(objCls, constructortorId, thiz);

        env->SetFloatField(jObj, xId, objects[i].x);
        env->SetFloatField(jObj, yId, objects[i].y);
        env->SetFloatField(jObj, wId, objects[i].w);
        env->SetFloatField(jObj, hId, objects[i].h);
        env->SetObjectField(jObj, labelId, env->NewStringUTF(class_names[objects[i].label]));
        env->SetFloatField(jObj, probId, objects[i].prob);

        env->SetObjectArrayElement(jObjArray, i, jObj);
    }

    double elasped = ncnn::get_current_time() - start_time;
    __android_log_print(ANDROID_LOG_DEBUG, "YoloV5Ncnn", "%.2fms   detect", elasped);

    return jObjArray;
}

} 
  
  1. 注意 432、451、470行,在第 “二” 步中,“修改配置”步骤中Permute的值,将三处参数依次修改为上同参数值,即 432行修改为 **ex.extract("output", out);** 451行修改为 **ex.extract("365", out);** 470行修改为"ex.extract("385", out);"。
  2. 修改521行列表,与样本集中 labels下的classes.txt列表对应。
  3. 修改351行 constructortorId = env->GetMethodID(objCls, "", "(Lcom/tencent/yolov5ncnn/YoloV5Ncnn;)V");,将“com/tencent/yolov5ncnn/YoloV5Ncnn” 修改为自定义java类,注意前部的“L”和尾部的“V”保留(或者直接按照此包结构在模块下的src/main/java下创建此包和类文件)
  4. 修改348行 jclass localObjCls = env->FindClass("com/tencent/yolov5ncnn/YoloV5Ncnn$Obj"); 中 "com/tencent/yolov5ncnn/YoloV5Ncnn$Obj" 为自定义java类,同上,但不可丢掉后面的$Obj。
  • 创建反射类
// Tencent is pleased to support the open source community by making ncnn available.
//
// Copyright (C) 2020 THL A29 Limited, a Tencent company. All rights reserved.
//
// Licensed under the BSD 3-Clause License (the "License"); you may not use this file except
// in compliance with the License. You may obtain a copy of the License at
//
// https://opensource.org/licenses/BSD-3-Clause
//
// Unless required by applicable law or agreed to in writing, software distributed
// under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR
// CONDITIONS OF ANY KIND, either express or implied. See the License for the
// specific language governing permissions and limitations under the License.

package com.tencent.yolov5ncnn;

import android.content.res.AssetManager;
import android.graphics.Bitmap;

public class YoloV5Ncnn
{
    public native boolean Init(AssetManager mgr);

    public class Obj {
        // x
        public float x;
        // y
        public float y;
        // w
        public float w;
        // h
        public float h;
        // 标签
        public String label;
        // 置信度
        public float prob;

        @Override
        public String toString() {
            return "Obj{" +
                    "x=" + x +
                    ", y=" + y +
                    ", w=" + w +
                    ", h=" + h +
                    ", label='" + label + '\'' +
                    ", prob=" + prob +
                    '}';
        }
    }

    public native Obj[] Detect(Bitmap bitmap, boolean use_gpu);

    static {
        // 为CMakeLists.txt中配置的project名称
        System.loadLibrary("yolov5ncnn");
    }
}
  • 修改模块的build.grade配置
plugins {
    id 'com.android.library'
}

android {
    namespace 'cn.tiktok.ncnn'
    compileSdk 24

    defaultConfig {
        minSdk 24
        archivesBaseName = "$applicationId"
        testInstrumentationRunner "androidx.test.runner.AndroidJUnitRunner"
        consumerProguardFiles "consumer-rules.pro"
        externalNativeBuild {
            cmake {
                cppFlags "-std=c++11"
            }
        }
        ndk {
            // 可减少平台支持,减小包体积
            abiFilters "armeabi-v7a", "arm64-v8a", "x86", "x86_64"
        }
    }

    buildTypes {
        release {
            minifyEnabled false
            proguardFiles getDefaultProguardFile('proguard-android-optimize.txt'), 'proguard-rules.pro'
        }
    }
    externalNativeBuild {
        cmake {
            // 此处指向CMakeLists.txt 所在文件夹
            path "src/main/jni/CMakeLists.txt"
            version "3.10.2"
        }
    }
    compileOptions {
        sourceCompatibility JavaVersion.VERSION_1_8
        targetCompatibility JavaVersion.VERSION_1_8
    }
}

dependencies {
    implementation 'androidx.appcompat:appcompat:1.4.1'
    implementation 'com.google.android.material:material:1.5.0'
    testImplementation 'junit:junit:4.13.2'
    androidTestImplementation 'androidx.test.ext:junit:1.1.3'
    androidTestImplementation 'androidx.test.espresso:espresso-core:3.4.0'
}
  • 部署模型

在模块的src/main目录下创建 assets 文件夹,然后检查文件夹属性。如果被创建为了普通文件夹,如下图所示。

YOLOV5从训练到部署测试NCNN安卓端部署保姆级教程_第8张图片

则在此文件夹上右键,选择 Mark Directory as,选择Resources root。

我们在第“二”步的“检出为ncnn可用模型”步骤,生成了 yolov5s.param 和 yolov5s.bin两个文件,将两个文件复制到assets文件夹下。

然后在app中引入此模块,并使用,注意修改为模块名称

YOLOV5从训练到部署测试NCNN安卓端部署保姆级教程_第9张图片

 最后选择Android Studio菜单栏 File -> Sync Project wth Gradle FIles,等待执行完毕。

四、测试使用

public class MainActivity extends Activity{
    private YoloV5Ncnn yolov5ncnn = new YoloV5Ncnn();
    
    /** Called when the activity is first created. */
    @Override
    public void onCreate(Bundle savedInstanceState){
        super.onCreate(savedInstanceState);
        // 初始化
        boolean ret_init = yolov5ncnn.Init(getAssets());
        if (!ret_init){
            Log.e("MainActivity", "yolov5ncnn Init failed");
        }
        // 图片、是否使用GPU
        YoloV5Ncnn.Obj[] objects = yolov5ncnn.Detect(imageBitmap, false);
        // 根据注释解析YoloV5Ncnn.Obj
        ...
    }
}

你可能感兴趣的:(ubuntu,linux,运维)