- AI原生应用:多模态交互技术的5大核心应用场景解析
AIGC应用创新大全
AI大模型与大数据技术AI人工智能与大数据应用开发MCP&Agent云算力网络AI-nativeai
#AI原生应用:多模态交互技术的5大核心应用场景解析>关键词:多模态交互、AI原生应用、人机交互、深度学习、应用场景>摘要:本文将深入解析多模态交互技术的核心原理,通过智能家居、医疗诊断、自动驾驶、教育创新和虚拟助手五大应用场景,揭示AI如何像人类感官协同工作般理解世界。文章包含技术原理图解、真实案例代码和未来趋势预测。##背景介绍###目的和范围解析多模态交互技术在AI原生应用中的落地实践,涵盖
- 多模态融合:现代搜索引擎底层图像、视频检索的技术架构设计
何雅琪¥
搜索引擎
在多媒体内容爆炸式增长的当下,用户对搜索引擎的需求已从单纯的文本检索拓展到图像、视频等多元模态。多模态融合技术打破了信息载体的界限,使搜索引擎能够理解图像的视觉语义、视频的动态内容,并实现跨模态的精准检索。从特征提取到检索匹配,现代搜索引擎底层围绕图像、视频检索构建起复杂而精妙的技术架构,重塑了用户获取信息的方式。一、多模态数据的特征提取:解码视觉信息图像与视频包含丰富的视觉信息,其特征提取是实现
- AI技术通过多模态应用(即融合文本、图像、语音、视频、传感器数据等多维度信息)正在深刻重塑工作模式、行业生态和人类创造力边界。
zzywxc787
人工智能音视频大数据javaspring开发语言
AI技术通过多模态应用(即融合文本、图像、语音、视频、传感器数据等多维度信息)正在深刻重塑工作模式、行业生态和人类创造力边界。以下从技术融合、行业变革、职业重构三个维度展开分析,并附具体案例:一、技术融合:多模态AI的核心突破跨模态理解引擎案例:Meta的AudiovisualNeuralNetwork(AV-Wav2Vec)实现语音-唇形-场景的联合建模,语音识别错误率降低40%技术指标:跨模态
- PyTorch 2.7深度技术解析:新一代深度学习框架的革命性演进
智算菩萨
深度学习pytorch人工智能
引言:站在AI基础设施变革的历史节点在2025年这个充满变革的年份,PyTorch团队于4月23日正式发布了2.7.0版本,随后在6月4日推出了2.7.1补丁版本,标志着这个深度学习领域最具影响力的框架再次迎来了重大突破。这不仅仅是一次常规的版本更新,而是一次面向未来计算架构和AI应用场景的全面重构。从底层硬件支持到上层API设计,从编译器优化到注意力机制革新,PyTorch2.7展现出了前所未有
- Boltz-2:革命性生物分子模型,加速药物发现的新引擎
花生糖@
AIGC学习资料库Boltz-2生物模型AI
在药物研发领域,预测蛋白质与其他分子间的结合强度(BindingAffinity)始终是核心挑战之一。传统方法如自由能微扰法(FEP)虽然精确,但计算成本极高,难以大规模应用。如今,Boltz-2的诞生打破了这一瓶颈——这是首个开源的深度学习模型,其结合强度预测准确度接近FEP方法,却将速度提升了1000倍,成为药物早期筛选的“加速器”。项目简介Boltz-2是由jwohlwend团队开发的生物分
- 人工智能学习资源
Hemy08
人工智能学习
无机器学习基础:https://www.coursera.org/learn/machine-learning有机器学习基础:MachineYearning深度学习入门:https://www.coursera.org/learn/neural-networks-deep-learning
- TensorFlow图神经网络(GNN)入门指南
AI天才研究院
AI人工智能与大数据tensorflow神经网络人工智能ai
TensorFlow图神经网络(GNN)入门指南关键词:TensorFlow、图神经网络、GNN、深度学习、图数据、节点嵌入、图卷积网络摘要:本文全面介绍如何使用TensorFlow实现图神经网络(GNN)。我们将从图数据的基本概念开始,深入探讨GNN的核心原理,包括图卷积网络(GCN)、图注意力网络(GAT)等流行架构,并通过TensorFlow代码示例展示如何构建和训练GNN模型。文章还将涵盖
- 深度学习微调中的优化器全景解析:从理论到实践
北辰alk
AI深度学习人工智能
文章目录一、基础优化器:深度学习微调的基石1.1随机梯度下降(SGD)1.2AdaGrad(自适应梯度算法)二、自适应优化器:现代深度学习的标配2.1RMSProp2.2Adam(自适应矩估计)三、大模型微调专用优化器3.1LAMB(Layer-wiseAdaptiveMoments)3.2Sophia(二阶优化启发)四、优化器性能对比研究4.1在GLUE基准上的表现(BERT-base微调)4.
- 【AI论文】GLM-4.1V-思考:借助可扩展强化学习实现通用多模态推理
东临碣石82
人工智能
摘要:我们推出GLM-4.1V-Thinking这一视觉语言模型(VLM),该模型旨在推动通用多模态推理的发展。在本报告中,我们分享了在以推理为核心的训练框架开发过程中的关键发现。我们首先通过大规模预训练开发了一个具备显著潜力的高性能视觉基础模型,可以说该模型为最终性能设定了上限。随后,借助课程采样强化学习(ReinforcementLearningwithCurriculumSampling,R
- PyTorch 详细安装教程及核心API使用指南
慕婉0307
pytorchpytorch人工智能python
一、PyTorch简介PyTorch是由FacebookAIResearch(FAIR)于2016年开发的开源深度学习框架,现已成为学术界和工业界最受欢迎的深度学习工具之一。其核心优势在于采用了动态计算图(DynamicComputationGraph,又称"define-by-run"机制),这使得开发者能够像编写普通Python代码一样构建神经网络,并在运行时动态调整计算图结构,大大提高了研究
- Apple Sensor-Fusion 架构全解析:多模态语义图像感知系统设计与实战路径
观熵
影像技术全景图谱:架构调优与实战架构影像Camera
AppleSensor-Fusion架构全解析:多模态语义图像感知系统设计与实战路径关键词:AppleA系列、SensorFusion、语义图像感知、IMU+Camera协同、图像识别、ARKit、视觉惯性融合、多模态协同计算、CoreMotion、ISP语义路径摘要:Apple自A13及其后续SoC架构中,持续深化Sensor-Fusion与图像语义感知的协同设计,构建出以ISP、NPU、IMU
- AIGC视觉生成革命:文生图、图生图与视频生成垂直模型发展全景报告(2025)
Liudef06小白
AIGC人工智能AI作画语言模型
一、引言:从实验工具到产业引擎的跃迁人工智能生成内容(AIGC)技术正经历从文本向多模态的范式转移。2023-2025年间,文生图、图生图与视频生成垂直模型逐步跨越技术奇点,从实验室玩具进化为工业化生产力工具。这一进程的核心驱动力在于架构创新、数据优化与场景深耕的三重突破:扩散模型与Transformer的融合催生了更高保真度的图像生成;十亿级多模态数据训练解决了复杂语义理解难题;而面向影视、电商
- xGen-MM (BLIP-3):一类开放式大型多模态模型
Phoenixtree_DongZhao
LargeModel人工智能深度学习大语言模型
xGen-MM(BLIP-3):AFamilyofOpenLargeMultimodalModelsGitHub-salesforce/LAVISatxgen-mm|2408.08872(arxiv.org)AbstractThisreportintroducesxGen-MM(alsoknownasBLIP-3),aframeworkfordevelopingLargeMultimodalMod
- Aletheia 情感智能模型:完整实现
Aletheia情感智能模型,整合所有核心模块并解决之前指出的问题。这个实现包含完整的神经动力学系统、多模态情感融合、伦理约束场和量子意识接口。importnumpyasnpimportmatplotlib.pyplotaspltfromscipy.integrateimportodeintfromsklearn.decompositionimportPCAimporttorchimporttor
- 开源模型应用落地-OpenAI Agents SDK-集成MCP与Qwen3-8B模型的创新应用探索(七)
开源技术探险家
开源模型-实际应用落地开源pythonai人工智能
一、前言在人工智能技术飞速发展的今天,如何将先进的模型和技术无缝结合,成为推动行业变革的关键。OpenAIAgents通过集成模型上下文协议(MCP)和阿里巴巴推出的Qwen3-8B模型,正开启一场智能应用的革命。这种创新的结合不仅提升了AI代理与外部工具之间的通信能力,还在多模态任务处理、个性化服务等领域展现出巨大潜力。本文将深入探讨这一技术组合的实际应用场景,揭示其在改善客户体验和提升运营效率
- 什么是深度学习框架中的计算图?
杰瑞学AI
ComputerknowledgeNLP/LLMsAI/AGI深度学习人工智能pytorch
在深度学习框架中,计算图是核心的数据结构和抽象概念,它用来表示和定义深度学习模型的计算过程。我们可以把它想象成一个描述数学运算如何组合和执行的有向图。以下是计算图的关键要素和作用:节点:代表操作或变量。操作:数学运算,如加法(+)、乘法(*)、矩阵乘法(matmul)、激活函数(ReLU,sigmoid)、卷积(conv2d)、损失函数(cross_entropy)等。变量:通常是张量,即存储数据
- 蛋白质结构预测/功能注释/交互识别/按需设计,中国海洋大学张树刚团队直击蛋白质智能计算核心任务
hyperai
蛋白质作为生命活动的主要承担者,在人体生理功能中扮演关键角色。然而传统研究面临结构解析成本高昂、功能注释严重滞后、新型蛋白质设计效率低下等挑战。近年来,生命科学对蛋白质复杂特性解析的需求日益迫切,大数据、深度学习、多模态计算等技术的突破性发展,为构建蛋白质智能计算体系提供了全新的发展契机。蛋白质智能计算体系的构建,使得蛋白质在大规模功能注释、交互预测及三维结构建模等领域取得显著成果,为药物发现与生
- 【心灵鸡汤】深度学习技能形成树:从零基础到AI专家的成长路径全解析
智算菩萨
人工智能深度学习
引言:技能树的生长哲学在这个人工智能浪潮汹涌的时代,深度学习犹如一棵参天大树,其根系深深扎入数学与计算科学的沃土,主干挺拔地承载着机器学习的核心理念,而枝叶则繁茂地延伸至计算机视觉、自然语言处理、强化学习等各个应用领域。对于初入此领域的新手而言,理解这棵技能树的生长规律,掌握其形成过程中的关键节点和发展阶段,将直接决定其在人工智能道路上能够走多远、攀多高。技能树的概念源于游戏设计,但在学习深度学习
- ViP-LLaVA: 使大型多模态模型理解任意视觉提示
AI专题精讲
Paper阅读多模态人工智能AI
摘要现有的大型视觉-语言多模态模型主要关注整体图像理解,但在实现区域特定的理解方面仍存在显著差距。目前,使用文本坐标或空间编码的方法通常无法为视觉提示提供用户友好的接口。为了解决这个问题,我们提出了一种新颖的多模态模型,能够解码任意(自由形式)视觉提示。这使得用户可以通过自然提示(如“红色边框”或“指向箭头”)直观地标记图像并与模型互动。我们的简单设计直接将视觉标记叠加在RGB图像上,避免了复杂的
- 【TVM 教程】如何处理 TVM 报错
ApacheTVM是一个深度的深度学习编译框架,适用于CPU、GPU和各种机器学习加速芯片。更多TVM中文文档可访问→https://tvm.hyper.ai/运行TVM时,可能会遇到如下报错:---------------------------------------------------------------AnerroroccurredduringtheexecutionofTVM.F
- 多模态大模型的技术应用与未来展望:重构AI交互范式的新引擎
zhaoyi_he
重构人工智能
一、引言:为什么多模态是AI发展的下一场革命?过去十年,深度学习推动了计算机视觉和自然语言处理的飞跃,但两者的发展路径长期割裂。随着生成式AI和大模型时代的到来,**多模态大模型(MultimodalFoundationModels)**以统一的建模方式处理图像、文本、音频、视频等多源数据,重塑了“感知-认知-决策”链条,为AGI迈出关键一步。OpenAI的GPT-4o、Google的Gemini
- 别再盯着工具选型了,组织协作真正的问题在这里|CTO的一线观察
GPT、Agent、多模态、Copilot……新一轮AI热潮涌来,很多企业也跟上了节奏,纷纷把“AI办公”挂上了OKR。你可能也遇到过这样的场景:项目部署了AI助手,但团队协作依然低效;工具用了不少,日报、周报、纪要、方案、流程……依然靠人手“补漏”;系统林立,数据割裂,信息层层递送但任务没人推动,协同像“失速列车”。AI上了,协作没变——问题出在哪儿?作为一线的技术负责人,我们不得不承认:真正的
- llama-cpp-python使用教程
try2find
llamapython开发语言
以下是llama-cpp-python的完整使用教程,涵盖安装、基础用法、高级功能(如GPU加速、多模态等)和常见问题解决。1.安装1.1基础安装(CPU版)pipinstallllama-cpp-python-ihttps://pypi.tuna.tsinghua.edu.cn/simple1.2启用GPU加速(CUDA)CMAKE_ARGS="-DGGML_CUDA=ON"pipinstall
- 【机器学习&深度学习】多分类评估策略
一叶千舟
深度学习【理论】深度学习【应用必备常识】大数据人工智能
目录前言一、多分类3大策略✅宏平均(MacroAverage)✅加权平均(WeightedAverage)✅微平均(MicroAverage)二、类比理解2.1宏平均(MacroAverage)2.1.1计算方式2.1.2适合场景2.1.3宏平均不适用的场景2.1.4宏平均一般用在哪些指标上?2.1.5怎么看macroavg指标?2.1.6宏平均值低说明了什么?2.1.7从宏平均指标中定位模型短板
- OpenCV 图像操作:颜色识别、替换与水印添加
目录引言代码实现1.导入必要的库2.图像加法3.图像直接相加4.颜色加权加法5.HSV颜色空间转换概念作用6.查找颜色范围对应的像素点7.与运算-生成掩膜8.添加水印9.主函数总结引言在计算机视觉领域,OpenCV是一个强大的库,提供了丰富的图像操作功能。本文将详细介绍如何使用OpenCV进行图像加法、颜色加权加法、HSV颜色空间转换、颜色范围查找、与运算生成掩膜以及添加水印等操作,并给出相应的P
- 大语言模型应用指南:ReAct 框架
AI大模型应用实战
javapythonjavascriptkotlingolang架构人工智能
大语言模型应用指南:ReAct框架关键词:大语言模型,ReAct框架,自然语言处理(NLP),模型融合,多模态学习,深度学习,深度学习框架1.背景介绍1.1问题由来近年来,深度学习技术在自然语言处理(NLP)领域取得了显著进展。尤其是大语言模型(LargeLanguageModels,LLMs),如BERT、GPT系列等,通过在大规模无标签数据上进行预训练,获得了强大的语言理解和生成能力。然而,预
- 大语言模型原理基础与前沿 基于语言反馈进行微调
AI天才研究院
计算AI大模型企业级应用开发实战AI人工智能与大数据计算科学神经计算深度学习神经网络大数据人工智能大型语言模型AIAGILLMJavaPython架构设计AgentRPA
大语言模型原理基础与前沿基于语言反馈进行微调作者:禅与计算机程序设计艺术/ZenandtheArtofComputerProgramming1.背景介绍1.1问题的由来随着深度学习技术的飞速发展,自然语言处理(NLP)领域取得了显著的进展。大语言模型(LargeLanguageModels,LLMs)如GPT-3、BERT等在各项NLP任务上取得了令人瞩目的成绩。然而,如何进一步提高大语言模型的理
- 探索AI人工智能医疗NLP实体识别系统的架构设计
AI学长带你学AI
人工智能自然语言处理easyuiai
探索AI人工智能医疗NLP实体识别系统的架构设计关键词:人工智能、医疗NLP、实体识别、系统架构、深度学习、自然语言处理、医疗信息化摘要:本文将深入探讨医疗领域NLP实体识别系统的架构设计。我们将从基础概念出发,逐步解析医疗文本处理的特殊性,详细介绍实体识别技术的核心原理,并通过实际案例展示如何构建一个高效可靠的医疗实体识别系统。文章还将探讨当前技术面临的挑战和未来发展方向,为医疗AI领域的从业者
- 人工智能动画展示人类的特征
AGI大模型与大数据研究院
AI大模型应用开发实战javapythonjavascriptkotlingolang架构人工智能
人工智能,动画,人类特征,情感识别,行为模拟,机器学习,深度学习,自然语言处理1.背景介绍人工智能(AI)技术近年来发展迅速,已渗透到生活的方方面面。从智能语音助手到自动驾驶汽车,AI正在改变着我们的世界。然而,尽管AI技术取得了令人瞩目的成就,但它仍然难以完全模拟人类的复杂行为和特征。人类的特征是多方面的,包括情感、认知、社交和创造力等。这些特征是人类区别于其他生物的重要标志,也是人类社会文明发
- 深度学习篇---简单果实分类网络
下面我将提供一个使用Python从零实现果实分类模型的完整流程,包括数据准备、模型构建、训练和部署,不依赖任何深度学习框架,仅使用NumPy进行数值计算。1.数据准备与预处理首先需要准备果实图像数据集,将其分为好果和坏果两类,并进行预处理:importosimportnumpyasnpfromPILimportImagefromsklearn.model_selectionimporttrain_
- Java 并发包之线程池和原子计数
lijingyao8206
Java计数ThreadPool并发包java线程池
对于大数据量关联的业务处理逻辑,比较直接的想法就是用JDK提供的并发包去解决多线程情况下的业务数据处理。线程池可以提供很好的管理线程的方式,并且可以提高线程利用率,并发包中的原子计数在多线程的情况下可以让我们避免去写一些同步代码。
这里就先把jdk并发包中的线程池处理器ThreadPoolExecutor 以原子计数类AomicInteger 和倒数计时锁C
- java编程思想 抽象类和接口
百合不是茶
java抽象类接口
接口c++对接口和内部类只有简介的支持,但在java中有队这些类的直接支持
1 ,抽象类 : 如果一个类包含一个或多个抽象方法,该类必须限定为抽象类(否者编译器报错)
抽象方法 : 在方法中仅有声明而没有方法体
package com.wj.Interface;
- [房地产与大数据]房地产数据挖掘系统
comsci
数据挖掘
随着一个关键核心技术的突破,我们已经是独立自主的开发某些先进模块,但是要完全实现,还需要一定的时间...
所以,除了代码工作以外,我们还需要关心一下非技术领域的事件..比如说房地产
&nb
- 数组队列总结
沐刃青蛟
数组队列
数组队列是一种大小可以改变,类型没有定死的类似数组的工具。不过与数组相比,它更具有灵活性。因为它不但不用担心越界问题,而且因为泛型(类似c++中模板的东西)的存在而支持各种类型。
以下是数组队列的功能实现代码:
import List.Student;
public class
- Oracle存储过程无法编译的解决方法
IT独行者
oracle存储过程
今天同事修改Oracle存储过程又导致2个过程无法被编译,流程规范上的东西,Dave 这里不多说,看看怎么解决问题。
1. 查看无效对象
XEZF@xezf(qs-xezf-db1)> select object_name,object_type,status from all_objects where status='IN
- 重装系统之后oracle恢复
文强chu
oracle
前几天正在使用电脑,没有暂停oracle的各种服务。
突然win8.1系统奔溃,无法修复,开机时系统 提示正在搜集错误信息,然后再开机,再提示的无限循环中。
无耐我拿出系统u盘 准备重装系统,没想到竟然无法从u盘引导成功。
晚上到外面早了一家修电脑店,让人家给装了个系统,并且那哥们在我没反应过来的时候,
直接把我的c盘给格式化了 并且清理了注册表,再装系统。
然后的结果就是我的oracl
- python学习二( 一些基础语法)
小桔子
pthon基础语法
紧接着把!昨天没看继续看django 官方教程,学了下python的基本语法 与c类语言还是有些小差别:
1.ptyhon的源文件以UTF-8编码格式
2.
/ 除 结果浮点型
// 除 结果整形
% 除 取余数
* 乘
** 乘方 eg 5**2 结果是5的2次方25
_&
- svn 常用命令
aichenglong
SVN版本回退
1 svn回退版本
1)在window中选择log,根据想要回退的内容,选择revert this version或revert chanages from this version
两者的区别:
revert this version:表示回退到当前版本(该版本后的版本全部作废)
revert chanages from this versio
- 某小公司面试归来
alafqq
面试
先填单子,还要写笔试题,我以时间为急,拒绝了它。。时间宝贵。
老拿这些对付毕业生的东东来吓唬我。。
面试官很刁难,问了几个问题,记录下;
1,包的范围。。。public,private,protect. --悲剧了
2,hashcode方法和equals方法的区别。谁覆盖谁.结果,他说我说反了。
3,最恶心的一道题,抽象类继承抽象类吗?(察,一般它都是被继承的啊)
4,stru
- 动态数组的存储速度比较 集合框架
百合不是茶
集合框架
集合框架:
自定义数据结构(增删改查等)
package 数组;
/**
* 创建动态数组
* @author 百合
*
*/
public class ArrayDemo{
//定义一个数组来存放数据
String[] src = new String[0];
/**
* 增加元素加入容器
* @param s要加入容器
- 用JS实现一个JS对象,对象里有两个属性一个方法
bijian1013
js对象
<html>
<head>
</head>
<body>
用js代码实现一个js对象,对象里有两个属性,一个方法
</body>
<script>
var obj={a:'1234567',b:'bbbbbbbbbb',c:function(x){
- 探索JUnit4扩展:使用Rule
bijian1013
java单元测试JUnitRule
在上一篇文章中,讨论了使用Runner扩展JUnit4的方式,即直接修改Test Runner的实现(BlockJUnit4ClassRunner)。但这种方法显然不便于灵活地添加或删除扩展功能。下面将使用JUnit4.7才开始引入的扩展方式——Rule来实现相同的扩展功能。
1. Rule
&n
- [Gson一]非泛型POJO对象的反序列化
bit1129
POJO
当要将JSON数据串反序列化自身为非泛型的POJO时,使用Gson.fromJson(String, Class)方法。自身为非泛型的POJO的包括两种:
1. POJO对象不包含任何泛型的字段
2. POJO对象包含泛型字段,例如泛型集合或者泛型类
Data类 a.不是泛型类, b.Data中的集合List和Map都是泛型的 c.Data中不包含其它的POJO
 
- 【Kakfa五】Kafka Producer和Consumer基本使用
bit1129
kafka
0.Kafka服务器的配置
一个Broker,
一个Topic
Topic中只有一个Partition() 1. Producer:
package kafka.examples.producers;
import kafka.producer.KeyedMessage;
import kafka.javaapi.producer.Producer;
impor
- lsyncd实时同步搭建指南——取代rsync+inotify
ronin47
1. 几大实时同步工具比较 1.1 inotify + rsync
最近一直在寻求生产服务服务器上的同步替代方案,原先使用的是 inotify + rsync,但随着文件数量的增大到100W+,目录下的文件列表就达20M,在网络状况不佳或者限速的情况下,变更的文件可能10来个才几M,却因此要发送的文件列表就达20M,严重减低的带宽的使用效率以及同步效率;更为要紧的是,加入inotify
- java-9. 判断整数序列是不是二元查找树的后序遍历结果
bylijinnan
java
public class IsBinTreePostTraverse{
static boolean isBSTPostOrder(int[] a){
if(a==null){
return false;
}
/*1.只有一个结点时,肯定是查找树
*2.只有两个结点时,肯定是查找树。例如{5,6}对应的BST是 6 {6,5}对应的BST是
- MySQL的sum函数返回的类型
bylijinnan
javaspringsqlmysqljdbc
今天项目切换数据库时,出错
访问数据库的代码大概是这样:
String sql = "select sum(number) as sumNumberOfOneDay from tableName";
List<Map> rows = getJdbcTemplate().queryForList(sql);
for (Map row : rows
- java设计模式之单例模式
chicony
java设计模式
在阎宏博士的《JAVA与模式》一书中开头是这样描述单例模式的:
作为对象的创建模式,单例模式确保某一个类只有一个实例,而且自行实例化并向整个系统提供这个实例。这个类称为单例类。 单例模式的结构
单例模式的特点:
单例类只能有一个实例。
单例类必须自己创建自己的唯一实例。
单例类必须给所有其他对象提供这一实例。
饿汉式单例类
publ
- javascript取当月最后一天
ctrain
JavaScript
<!--javascript取当月最后一天-->
<script language=javascript>
var current = new Date();
var year = current.getYear();
var month = current.getMonth();
showMonthLastDay(year, mont
- linux tune2fs命令详解
daizj
linuxtune2fs查看系统文件块信息
一.简介:
tune2fs是调整和查看ext2/ext3文件系统的文件系统参数,Windows下面如果出现意外断电死机情况,下次开机一般都会出现系统自检。Linux系统下面也有文件系统自检,而且是可以通过tune2fs命令,自行定义自检周期及方式。
二.用法:
Usage: tune2fs [-c max_mounts_count] [-e errors_behavior] [-g grou
- 做有中国特色的程序员
dcj3sjt126com
程序员
从出版业说起 网络作品排到靠前的,都不会太难看,一般人不爱看某部作品也是因为不喜欢这个类型,而此人也不会全不喜欢这些网络作品。究其原因,是因为网络作品都是让人先白看的,看的好了才出了头。而纸质作品就不一定了,排行榜靠前的,有好作品,也有垃圾。 许多大牛都是写了博客,后来出了书。这些书也都不次,可能有人让为不好,是因为技术书不像小说,小说在读故事,技术书是在学知识或温习知识,有
- Android:TextView属性大全
dcj3sjt126com
textview
android:autoLink 设置是否当文本为URL链接/email/电话号码/map时,文本显示为可点击的链接。可选值(none/web/email/phone/map/all) android:autoText 如果设置,将自动执行输入值的拼写纠正。此处无效果,在显示输入法并输
- tomcat虚拟目录安装及其配置
eksliang
tomcat配置说明tomca部署web应用tomcat虚拟目录安装
转载请出自出处:http://eksliang.iteye.com/blog/2097184
1.-------------------------------------------tomcat 目录结构
config:存放tomcat的配置文件
temp :存放tomcat跑起来后存放临时文件用的
work : 当第一次访问应用中的jsp
- 浅谈:APP有哪些常被黑客利用的安全漏洞
gg163
APP
首先,说到APP的安全漏洞,身为程序猿的大家应该不陌生;如果抛开安卓自身开源的问题的话,其主要产生的原因就是开发过程中疏忽或者代码不严谨引起的。但这些责任也不能怪在程序猿头上,有时会因为BOSS时间催得紧等很多可观原因。由国内移动应用安全检测团队爱内测(ineice.com)的CTO给我们浅谈关于Android 系统的开源设计以及生态环境。
1. 应用反编译漏洞:APK 包非常容易被反编译成可读
- C#根据网址生成静态页面
hvt
Web.netC#asp.nethovertree
HoverTree开源项目中HoverTreeWeb.HVTPanel的Index.aspx文件是后台管理的首页。包含生成留言板首页,以及显示用户名,退出等功能。根据网址生成页面的方法:
bool CreateHtmlFile(string url, string path)
{
//http://keleyi.com/a/bjae/3d10wfax.htm
stri
- SVG 教程 (一)
天梯梦
svg
SVG 简介
SVG 是使用 XML 来描述二维图形和绘图程序的语言。 学习之前应具备的基础知识:
继续学习之前,你应该对以下内容有基本的了解:
HTML
XML 基础
如果希望首先学习这些内容,请在本站的首页选择相应的教程。 什么是SVG?
SVG 指可伸缩矢量图形 (Scalable Vector Graphics)
SVG 用来定义用于网络的基于矢量
- 一个简单的java栈
luyulong
java数据结构栈
public class MyStack {
private long[] arr;
private int top;
public MyStack() {
arr = new long[10];
top = -1;
}
public MyStack(int maxsize) {
arr = new long[maxsize];
top
- 基础数据结构和算法八:Binary search
sunwinner
AlgorithmBinary search
Binary search needs an ordered array so that it can use array indexing to dramatically reduce the number of compares required for each search, using the classic and venerable binary search algori
- 12个C语言面试题,涉及指针、进程、运算、结构体、函数、内存,看看你能做出几个!
刘星宇
c面试
12个C语言面试题,涉及指针、进程、运算、结构体、函数、内存,看看你能做出几个!
1.gets()函数
问:请找出下面代码里的问题:
#include<stdio.h>
int main(void)
{
char buff[10];
memset(buff,0,sizeof(buff));
- ITeye 7月技术图书有奖试读获奖名单公布
ITeye管理员
活动ITeye试读
ITeye携手人民邮电出版社图灵教育共同举办的7月技术图书有奖试读活动已圆满结束,非常感谢广大用户对本次活动的关注与参与。
7月试读活动回顾:
http://webmaster.iteye.com/blog/2092746
本次技术图书试读活动的优秀奖获奖名单及相应作品如下(优秀文章有很多,但名额有限,没获奖并不代表不优秀):
《Java性能优化权威指南》