目录
5.3 基于LeNet实现手写体数字识别实验
5.3.1 数据
5.3.1.1 数据预处理
5.3.2 模型构建
5.3.3 模型训练
5.3.4 模型评价
5.3.5 模型预测
使用前馈神经网络实现MNIST识别,与LeNet效果对比。(选做)
可视化LeNet中的部分特征图和卷积核,谈谈自己的看法(选做)
总结:
常用的手写数字识别数据集:MNIST数据集。MNIST handwritten digit database, Yann LeCun, Corinna Cortes and Chris Burges
MNIST数据集是计算机视觉领域的经典入门数据集,包含了60,000个训练样本和10,000个测试样本。
这些数字已经过尺寸标准化并位于图像中心,图像是固定大小(28×28像素)。
LeNet-5虽然提出的时间比较早,但它是一个非常成功的神经网络模型。
基于LeNet-5的手写数字识别系统在20世纪90年代被美国很多银行使用,用来识别支票上面的手写数字。
为了节省训练时间,本节选取MNIST数据集的一个子集进行后续实验,数据集的划分为:
MNIST数据集分为train_set、dev_set和test_set三个数据集,每个数据集含两个列表分别存放了图片数据以及标签数据。比如train_set包含:
观察数据集分布情况,代码实现如下:
import json
import gzip
# 打印并观察数据集分布情况
train_set, dev_set, test_set = json.load(gzip.open('mnist.json.gz'))
train_images, train_labels = train_set[0][:1000], train_set[1][:1000]
dev_images, dev_labels = dev_set[0][:200], dev_set[1][:200]
test_images, test_labels = test_set[0][:200], test_set[1][:200]
train_set, dev_set, test_set = [train_images, train_labels], [dev_images, dev_labels], [test_images, test_labels]
print('Length of train/dev/test set:{}/{}/{}'.format(len(train_set[0]), len(dev_set[0]), len(test_set[0])))
可视化观察其中的一张样本以及对应的标签,代码如下所示:
import numpy as np
from PIL import Image
import matplotlib.pyplot as plt
image, label = train_set[0][0], train_set[1][0]
image, label = np.array(image).astype('float32'), int(label)
# 原始图像数据为长度784的行向量,需要调整为[28,28]大小的图像
image = np.reshape(image, [28,28])
image = Image.fromarray(image.astype('uint8'), mode='L')
print("The number in the picture is {}".format(label))
plt.figure(figsize=(5, 5))
plt.imshow(image)
plt.savefig('conv-number5.pdf')
图像分类网络对输入图片的格式、大小有一定的要求,数据输入模型前,需要对数据进行预处理操作,使图片满足网络训练以及预测的需要。本实验主要应用了如下方法:
代码实现如下:
import torchvision.transforms as transforms
# 数据预处理
transforms = transforms.Compose([transforms.Resize(32),transforms.ToTensor(), transforms.Normalize(mean=[0.5], std=[0.5])])
将原始的数据集封装为Dataset类,以便DataLoader调用。
import random
from torch.utils.data import Dataset,DataLoader
class MNIST_dataset(Dataset):
def __init__(self, dataset, transforms, mode='train'):
self.mode = mode
self.transforms =transforms
self.dataset = dataset
def __getitem__(self, idx):
# 获取图像和标签
image, label = self.dataset[0][idx], self.dataset[1][idx]
image, label = np.array(image).astype('float32'), int(label)
image = np.reshape(image, [28,28])
image = Image.fromarray(image.astype('uint8'), mode='L')
image = self.transforms(image)
return image, label
def __len__(self):
return len(self.dataset[0])
# 加载 mnist 数据集
train_dataset = MNIST_dataset(dataset=train_set, transforms=transforms, mode='train')
test_dataset = MNIST_dataset(dataset=test_set, transforms=transforms, mode='test')
dev_dataset = MNIST_dataset(dataset=dev_set, transforms=transforms, mode='dev')
这里的LeNet-5和原始版本有4点不同:
网络共有7层,包含3个卷积层、2个汇聚层以及2个全连接层的简单卷积神经网络接,受输入图像大小为32×32=1024,输出对应10个类别的得分。
具体实现如下:
import torch.nn.functional as F
import torch.nn as nn
import torch
class Model_LeNet(nn.Module):
def __init__(self, in_channels, num_classes=10):
super(Model_LeNet, self).__init__()
# 卷积层:输出通道数为6,卷积核大小为5×5
self.conv1 = nn.Conv2d(in_channels=in_channels, out_channels=6, kernel_size=5)
# 汇聚层:汇聚窗口为2×2,步长为2
self.pool2 = nn.MaxPool2d(kernel_size=(2, 2), stride=2)
# 卷积层:输入通道数为6,输出通道数为16,卷积核大小为5×5,步长为1
self.conv3 = nn.Conv2d(in_channels=6, out_channels=16, kernel_size=5, stride=1)
# 汇聚层:汇聚窗口为2×2,步长为2
self.pool4 = nn.AvgPool2d(kernel_size=(2, 2), stride=2)
# 卷积层:输入通道数为16,输出通道数为120,卷积核大小为5×5
self.conv5 = nn.Conv2d(in_channels=16, out_channels=120, kernel_size=5, stride=1)
# 全连接层:输入神经元为120,输出神经元为84
self.linear6 = nn.Linear(120, 84)
# 全连接层:输入神经元为84,输出神经元为类别数
self.linear7 = nn.Linear(84, num_classes)
def forward(self, x):
# C1:卷积层+激活函数
output = F.relu(self.conv1(x))
# S2:汇聚层
output = self.pool2(output)
# C3:卷积层+激活函数
output = F.relu(self.conv3(output))
# S4:汇聚层
output = self.pool4(output)
# C5:卷积层+激活函数
output = F.relu(self.conv5(output))
# 输入层将数据拉平[B,C,H,W] -> [B,CxHxW]
output = torch.squeeze(output, dim=3)
output = torch.squeeze(output, dim=2)
# F6:全连接层
output = F.relu(self.linear6(output))
# F7:全连接层
output = self.linear7(output)
return output
1.测试LeNet-5模型,构造一个形状为 [1,1,32,32]的输入数据送入网络,观察每一层特征图的形状变化。
代码实现如下:
import numpy as np
# 这里用np.random创建一个随机数组作为输入数据
inputs = np.random.randn(*[1, 1, 32, 32])
inputs = inputs.astype('float32')
# 创建Model_LeNet类的实例,指定模型名称和分类的类别数目
model = Model_LeNet(in_channels=1, num_classes=10)
# 通过调用LeNet从基类继承的sublayers()函数,查看LeNet中所包含的子层
print(model.named_parameters())
x = torch.tensor(inputs)
for item in model.children():
# item是LeNet类中的一个子层
# 查看经过子层之后的输出数据形状
item_shapex = 0
names = []
parameter = []
for name in item.named_parameters():
names.append(name[0])
parameter.append(name[1])
item_shapex += 1
try:
x = item(x)
except:
# 如果是最后一个卷积层输出,需要展平后才可以送入全连接层
x = x.reshape([x.shape[0], -1])
x = item(x)
if item_shapex == 2:
# 查看卷积和全连接层的数据和参数的形状,
# 其中item.parameters()[0]是权重参数w,item.parameters()[1]是偏置参数b
print(item, x.shape, parameter[0].shape, parameter[1].shape)
else:
# 汇聚层没有参数
print(item, x.shape)
结果:
从输出结果看,
2.
使用自定义算子,构建LeNet-5模型
自定义的Conv2D和Pool2D算子中包含多个for循环,所以运算速度比较慢。
飞桨框架中,针对卷积层算子和汇聚层算子进行了速度上的优化,这里基于paddle.nn.Conv2D、paddle.nn.MaxPool2D和paddle.nn.AvgPool2D构建LeNet-5模型,对比与上边实现的模型的运算速度。
使用pytorch中的相应算子,构建LeNet-5模型
torch.nn.Conv2d();torch.nn.MaxPool2d();torch.nn.avg_pool2d()
class Torch_LeNet(nn.Module):
def __init__(self, in_channels, num_classes=10):
super(Torch_LeNet, self).__init__()
# 卷积层:输出通道数为6,卷积核大小为5*5
self.conv1 = nn.Conv2d(in_channels=in_channels, out_channels=6, kernel_size=5)
# 汇聚层:汇聚窗口为2*2,步长为2
self.pool2 = nn.MaxPool2d(kernel_size=2, stride=2)
# 卷积层:输入通道数为6,输出通道数为16,卷积核大小为5*5
self.conv3 = nn.Conv2d(in_channels=6, out_channels=16, kernel_size=5)
# 汇聚层:汇聚窗口为2*2,步长为2
self.pool4 = nn.AvgPool2d(kernel_size=2, stride=2)
# 卷积层:输入通道数为16,输出通道数为120,卷积核大小为5*5
self.conv5 = nn.Conv2d(in_channels=16, out_channels=120, kernel_size=5)
# 全连接层:输入神经元为120,输出神经元为84
self.linear6 = nn.Linear(in_features=120, out_features=84)
# 全连接层:输入神经元为84,输出神经元为类别数
self.linear7 = nn.Linear(in_features=84, out_features=num_classes)
def forward(self, x):
# C1:卷积层+激活函数
output = F.relu(self.conv1(x))
# S2:汇聚层
output = self.pool2(output)
# C3:卷积层+激活函数
output = F.relu(self.conv3(output))
# S4:汇聚层
output = self.pool4(output)
# C5:卷积层+激活函数
output = F.relu(self.conv5(output))
# 输入层将数据拉平[B,C,H,W] -> [B,CxHxW]
output = torch.squeeze(output, dim=3)
output = torch.squeeze(output, dim=2)
# F6:全连接层
output = F.relu(self.linear6(output))
# F7:全连接层
output = self.linear7(output)
return output
3.测试两个网络的运算速度。
import time
# 这里用np.random创建一个随机数组作为测试数据
inputs = np.random.randn(*[1,1,32,32])
inputs = inputs.astype('float32')
x = torch.tensor(inputs)
# 创建Model_LeNet类的实例,指定模型名称和分类的类别数目
model = Model_LeNet(in_channels=1, num_classes=10)
# 创建Torch_LeNet类的实例,指定模型名称和分类的类别数目
torch_model = Torch_LeNet(in_channels=1, num_classes=10)
# 计算Model_LeNet类的运算速度
model_time = 0
for i in range(60):
strat_time = time.time()
out = model(x)
end_time = time.time()
# 预热10次运算,不计入最终速度统计
if i < 10:
continue
model_time += (end_time - strat_time)
avg_model_time = model_time / 50
print('Model_LeNet speed:', avg_model_time, 's')
# 计算Torch_LeNet类的运算速度
torch_model_time = 0
for i in range(60):
strat_time = time.time()
torch_out = torch_model(x)
end_time = time.time()
# 预热10次运算,不计入最终速度统计
if i < 10:
continue
torch_model_time += (end_time - strat_time)
avg_torch_model_time = torch_model_time / 50
print('Torch_LeNet speed:', avg_torch_model_time, 's')
结果:
4.令两个网络加载同样的权重,测试一下两个网络的输出结果是否一致。
# 这里用np.random创建一个随机数组作为测试数据
inputs = np.random.randn(*[1, 1, 32, 32])
inputs = inputs.astype('float32')
x = torch.tensor(inputs)
# 创建Model_LeNet类的实例,指定模型名称和分类的类别数目
model = Model_LeNet(in_channels=1, num_classes=10)
# 获取网络的权重
params = model.state_dict()
# 自定义Conv2D算子的bias参数形状为[out_channels, 1]
# torch API中Conv2D算子的bias参数形状为[out_channels]
# 需要进行调整后才可以赋值
for key in params:
if 'bias' in key:
params[key] = params[key].squeeze()
# 创建Torch_LeNet类的实例,指定模型名称和分类的类别数目
torch_model = Torch_LeNet(in_channels=1, num_classes=10)
# 将Model_LeNet的权重参数赋予给Torch_LeNet模型,保持两者一致
torch_model.load_state_dict(params)
# 打印结果保留小数点后6位
torch.set_printoptions(6)
# 计算Model_LeNet的结果
output = model(x)
print('Model_LeNet output: ', output)
# 计算Torch_LeNet的结果
torch_output = torch_model(x)
print('Torch_LeNet output: ', torch_output)
结果:
可以看到,输出结果是一致的。
5.统计LeNet-5模型的参数量和计算量。
参数量
按照公式(5.18)进行计算,可以得到:
所以,LeNet-5总的参数量为6170661706。
在pytorch中,还可以使用torchsummaryAPI自动计算参数量。
from torchsummary import summary
model = Torch_LeNet(in_channels=1, num_classes=10)
params_info = summary(model, (1, 32, 32))
print(params_info)
运行结果:
可以看到,结果与公式推导一致。
计算量
按照公式(5.19)进行计算,可以得到:
所以,LeNet-5总的计算量为423344423344。
在飞桨中,还可以使用paddle.flopsAPI自动统计计算量。pytorch可以么?
答:可以,在torch中可以使用torchstat统计计算量。
from torchstat import stat
model =Torch_LeNet(in_channels=1, num_classes=10)
# 导入模型,输入一张输入图片的尺寸
stat(model, (1, 32,32))
可以看到,结果与公式推导一致。
使用交叉熵损失函数,并用随机梯度下降法作为优化器来训练LeNet-5网络。
用RunnerV3在训练集上训练5个epoch,并保存准确率最高的模型作为最佳模型。
import torch.optim as opti
torch.manual_seed(100)
# 学习率大小
lr = 0.1
# 批次大小
batch_size = 64
# 加载数据
train_loader = DataLoader(train_dataset, batch_size=batch_size, shuffle=True)
dev_loader = DataLoader(dev_dataset, batch_size=batch_size)
test_loader = DataLoader(test_dataset, batch_size=batch_size)
model = Model_LeNet(in_channels=1, num_classes=10)
optimizer = opti.SGD(model.parameters(), 0.2)
# 定义损失函数
loss_fn = F.cross_entropy
# 定义评价指标
metric = Accuracy()
# 实例化 RunnerV3 类,并传入训练配置。
runner = RunnerV3(model, optimizer, loss_fn, metric)
# 启动训练
log_steps = 15
eval_steps = 15
runner.train(train_loader, dev_loader, num_epochs=6, log_steps=log_steps,eval_steps=eval_steps, save_path="best_model.pdparams")
可视化观察训练集与验证集的损失变化情况。
# 可视化误差
def plot(runner, fig_name):
plt.figure(figsize=(10, 5))
plt.subplot(1, 2, 1)
train_items = runner.train_step_losses[::30]
train_steps = [x[0] for x in train_items]
train_losses = [x[1] for x in train_items]
plt.plot(train_steps, train_losses, color='#8E004D', label="Train loss")
if runner.dev_losses[0][0] != -1:
dev_steps = [x[0] for x in runner.dev_losses]
dev_losses = [x[1] for x in runner.dev_losses]
plt.plot(dev_steps, dev_losses, color='#E20079', linestyle='--', label="Dev loss")
# 绘制坐标轴和图例
plt.ylabel("loss", fontsize='x-large')
plt.xlabel("step", fontsize='x-large')
plt.legend(loc='upper right', fontsize='x-large')
plt.subplot(1, 2, 2)
# 绘制评价准确率变化曲线
if runner.dev_losses[0][0] != -1:
plt.plot(dev_steps, runner.dev_scores,
color='#E20079', linestyle="--", label="Dev accuracy")
else:
plt.plot(list(range(len(runner.dev_scores))), runner.dev_scores,
color='#E20079', linestyle="--", label="Dev accuracy")
# 绘制坐标轴和图例
plt.ylabel("score", fontsize='x-large')
plt.xlabel("step", fontsize='x-large')
plt.legend(loc='lower right', fontsize='x-large')
plt.savefig(fig_name)
plt.show()
runner.load_model('best_model.pdparams')
plot(runner, 'cnn-loss1.pdf')
使用测试数据对在训练过程中保存的最佳模型进行评价,观察模型在测试集上的准确率以及损失变化情况。
# 加载最优模型
runner.load_model('best_model.pdparams')
# 模型评价
score, loss = runner.evaluate(test_loader)
print("[Test] accuracy/loss: {:.4f}/{:.4f}".format(score, loss))
同样地,我们也可以使用保存好的模型,对测试集中的某一个数据进行模型预测,观察模型效果。
# 获取测试集中第一条数
X, label = next(iter(test_loader))
logits = runner.predict(X)
# 多分类,使用softmax计算预测概率
pred = F.softmax(logits,dim=1)
print(pred.shape)
# 获取概率最大的类别
pred_class = torch.argmax(pred[2]).numpy()
print(pred_class)
label = label[2].numpy()
# 输出真实类别与预测类别
print("The true category is {} and the predicted category is {}".format(label, pred_class))
# 可视化图片
plt.figure(figsize=(2, 2))
image, label = test_set[0][2], test_set[1][2]
image= np.array(image).astype('float32')
image = np.reshape(image, [28,28])
image = Image.fromarray(image.astype('uint8'), mode='L')
plt.imshow(image)
plt.savefig('cnn-number2.pdf')
import torch
from torchvision import transforms # 对图像进行原始的数据处理的工具
from torchvision import datasets # 获取数据
from torch.utils.data import DataLoader # 加载数据
import torch.nn.functional as F # 与全连接层中的relu激活函数 有关
import torch.optim as optim # 与优化器有关
batch_size = 64
transform = transforms.Compose([ # 处理图像
transforms.ToTensor(), # Convert the PIL Image to Tensor
transforms.Normalize((0.1307,), (0.3081,)) # 归一化;0.1307为均值,0.3081为标准差
])
train_dataset = datasets.MNIST(root='./dataset/mnist/', train=True, download=True, transform=transform)
# download=True表示自动下载MNIST数据集
train_loader = DataLoader(train_dataset, shuffle=True, batch_size=batch_size)
test_dataset = datasets.MNIST(root='./dataset/mnist/', train=False, download=True, transform=transform)
test_loader = DataLoader(test_dataset, shuffle=False, batch_size=batch_size)
class Net(torch.nn.Module):
def __init__(self):
super(Net, self).__init__()
self.l1 = torch.nn.Linear(784, 512)
self.l2 = torch.nn.Linear(512, 256)
self.l3 = torch.nn.Linear(256, 128)
self.l4 = torch.nn.Linear(128, 64)
self.l5 = torch.nn.Linear(64, 10)
def forward(self, x):
x = x.view(-1, 784) # -1其实就是自动获取mini_batch
x = F.relu(self.l1(x))
x = F.relu(self.l2(x))
x = F.relu(self.l3(x))
x = F.relu(self.l4(x))
return self.l5(x) # 最后一层不做激活,不进行非线性变换
model = Net()
criterion = torch.nn.CrossEntropyLoss() # 构建损失函数
optimizer = optim.SGD(model.parameters(), lr=0.01, momentum=0.5)
def train(epoch):
running_loss = 0.0
for batch_idx, data in enumerate(train_loader, 0):
# 获得一个批次的数据和标签
inputs, target = data
optimizer.zero_grad()
# 获得模型预测结果(64, 10)
outputs = model(inputs)
# 交叉熵代价函数outputs(64,10),target(64)
loss = criterion(outputs, target)
loss.backward()
optimizer.step()
running_loss += loss.item()
if batch_idx % 300 == 299: # batch_idx最大值为937;937*64=59968 意味着丢弃了部分的样本
print('[%d, %5d] loss: %.3f' % (epoch + 1, batch_idx + 1, running_loss / 300))
# 注:在python中,通过使用%,实现格式化字符串的目的;%d 有符号整数(十进制)
running_loss = 0.0
def test():
correct = 0 # 正确预测的数量
total = 0 # 总数量
with torch.no_grad(): # 测试的时候不需要计算梯度(避免产生计算图)
for data in test_loader:
images, labels = data
outputs = model(images)
_, predicted = torch.max(outputs.data, dim=1) # dim = 1 列是第0个维度,行是第1个维度
total += labels.size(0)
correct += (predicted == labels).sum().item() # 张量之间的比较运算
print('accuracy on test set: %d %% ' % (100 * correct / total))
if __name__ == '__main__':
for epoch in range(10):
train(epoch)
test()
前馈神经网络在开始时就能获得很高的准确率,LeNet在刚开始的时候的准确率比较低,而运行速度比前馈神经网络快。
class Paddle_LeNet1(nn.Module):
def __init__(self, in_channels, num_classes=10):
super(Paddle_LeNet1, self).__init__()
# 卷积层:输出通道数为6,卷积核大小为5*5
self.conv1 = nn.Conv2d(in_channels=in_channels, out_channels=6, kernel_size=5)
# 汇聚层:汇聚窗口为2*2,步长为2
self.pool2 = nn.MaxPool2d(kernel_size=2, stride=2)
# 卷积层:输入通道数为6,输出通道数为16,卷积核大小为5*5
self.conv3 = nn.Conv2d(in_channels=6, out_channels=16, kernel_size=5)
# 汇聚层:汇聚窗口为2*2,步长为2
self.pool4 = nn.AvgPool2d(kernel_size=2, stride=2)
# 卷积层:输入通道数为16,输出通道数为120,卷积核大小为5*5
self.conv5 = nn.Conv2d(in_channels=16, out_channels=120, kernel_size=5)
# 全连接层:输入神经元为120,输出神经元为84
self.linear6 = nn.Linear(in_features=120, out_features=84)
# 全连接层:输入神经元为84,输出神经元为类别数
self.linear7 = nn.Linear(in_features=84, out_features=num_classes)
def forward(self, x):
image=[]
# C1:卷积层+激活函数
output = F.relu(self.conv1(x))
image.append(output)
# S2:汇聚层
output = self.pool2(output)
# C3:卷积层+激活函数
output = F.relu(self.conv3(output))
image.append(output)
# S4:汇聚层
output = self.pool4(output)
# C5:卷积层+激活函数
output = F.relu(self.conv5(output))
image.append(output)
# 输入层将数据拉平[B,C,H,W] -> [B,CxHxW]
output = torch.squeeze(output, dim=3)
output = torch.squeeze(output, dim=2)
# F6:全连接层
output = F.relu(self.linear6(output))
# F7:全连接层
output = self.linear7(output)
return image
# create model
model1 = Paddle_LeNet1(in_channels=1, num_classes=10)
# model_weight_path ="./AlexNet.pth"
model_weight_path = 'best_model.pdparams'
model1.load_state_dict(torch.load(model_weight_path))
# forward正向传播过程
out_put = model1(X)
print(out_put[0].shape)
for i in range(0,3):
for feature_map in out_put[i]:
# [N, C, H, W] -> [C, H, W] 维度变换
im = np.squeeze(feature_map.detach().numpy())
# [C, H, W] -> [H, W, C]
im = np.transpose(im, [1, 2, 0])
print(im.shape)
# show 9 feature maps
plt.figure()
for i in range(6):
ax = plt.subplot(2, 3, i + 1) # 参数意义:3:图片绘制行数,5:绘制图片列数,i+1:图的索引
# [H, W, C]
# 特征矩阵每一个channel对应的是一个二维的特征矩阵,就像灰度图像一样,channel=1
# plt.imshow(im[:, :, i])i,,
plt.imshow(im[:, :, i], cmap='gray')
plt.show()
break
斋藤康毅:
图灵社区
通过本次实验对LeNet网络有了更多的认识和理解,学习到了参数量、计算量,测试了网络的运算速度。印象最深的还是选做题,比较使用前馈神经网络识别MNIST数据集和使用LeNet网络识别。还可视化了LeNet中的部分特征图和卷积核,通过老师分享的资料学习到了鱼书中关于这部分的知识。前馈神经网络需要学习的内容还有很多,还是需要自己课下花时间多研究的,多学习理解优秀的文章。
参考:
NNDL 实验六 卷积神经网络(3)LeNet实现MNIST_HBU_David的博客-CSDN博客_lenet实现mnist
NNDL 实验六 卷积神经网络(3)LeNet实现MNIST_别被打脸的博客-CSDN博客