import org.opencv.core.*;importorg.opencv.highgui.HighGui;importorg.opencv.imgcodecs.Imgcodecs;importorg.opencv.imgproc.Imgproc;importorg.opencv.objdetect.CascadeClassifier;importorg.opencv.videoio.VideoCapture;importorg.opencv.videoio.VideoWriter;importorg.opencv.videoio.Videoio;importjava.util.Arrays;/*** @Title: Opencv 图片人脸识别、实时摄像头人脸识别、视频文件人脸识别
* @Description: OpenCV-4.1.1 测试文件
* @date: 2019年8月19日 17:17:48
*@version: V-1.0.0*/
public classFaceVideo {//初始化人脸探测器
staticCascadeClassifier faceDetector;static int i = 0;static{
System.loadLibrary(Core.NATIVE_LIBRARY_NAME);
faceDetector= new CascadeClassifier("M:\\opencv\\opencv\\sources\\data\\haarcascades\\haarcascade_frontalface_alt.xml");
}public static voidmain(String[] args) {//1- 从摄像头实时人脸识别,识别成功保存图片到本地
getVideoFromCamera();//writeVideo();//2- 从本地视频文件中识别人脸//getVideoFromFile();//3- 本地图片人脸识别,识别成功并保存人脸图片到本地
/*face();*/
//4- 比对本地2张图的人脸相似度 (越接近1越相似)
/*String basePicPath = "D:\\Documents\\Pictures\\";
double compareHist = compare_image(basePicPath + "fc.jpg", basePicPath + "fc_1.jpg");
System.out.println(compareHist);
if (compareHist > 0.72) {
System.out.println("人脸匹配");
} else {
System.out.println("人脸不匹配");
}*/}/*** OpenCV-4.1.1 从摄像头实时读取
*
*@return: void
* @date: 2019年8月19日 17:20:13*/
public static voidgetVideoFromCamera() {//1 如果要从摄像头获取视频 则要在 VideoCapture 的构造方法写 0
VideoCapture capture = new VideoCapture(0);
Mat video= newMat();int index = 0;if(capture.isOpened()) {while (i < 3) {//匹配成功3次退出
capture.read(video);
HighGui.imshow("实时人脸识别", getFace(video));
index= HighGui.waitKey(100);if (index == 27) {
capture.release();break;
}
}
}else{
System.out.println("摄像头未开启");
}try{
capture.release();
Thread.sleep(1000);
System.exit(0);
}catch(InterruptedException e) {
e.printStackTrace();
}return;
}/*** OpenCV-4.1.1 从视频文件中读取
*
*@return: void
* @date: 2019年8月19日 17:20:20*/
public static voidgetVideoFromFile() {
VideoCapture capture= newVideoCapture();
capture.open("C:\\Users\\Administrator\\Desktop\\1.avi");//1 读取视频文件的路径
if (!capture.isOpened()) {
System.out.println("读取视频文件失败!");return;
}
Mat video= newMat();int index = 0;while(capture.isOpened()) {
capture.read(video);//2 视频文件的视频写入 Mat video 中
HighGui.imshow("本地视频识别人脸", getFace(video));//3 显示图像
index = HighGui.waitKey(100);//4 获取键盘输入
if (index == 27) {//5 如果是 Esc 则退出
capture.release();return;
}
}
}/*** OpenCV-4.1.1 人脸识别
*
*@paramimage 待处理Mat图片(视频中的某一帧)
*@return处理后的图片
* @date: 2019年8月19日 17:19:36*/
public staticMat getFace(Mat image) {//1 读取OpenCV自带的人脸识别特征XML文件(faceDetector)//CascadeClassifier facebook=new CascadeClassifier("D:\\Sofeware\\opencv\\sources\\data\\haarcascades\\haarcascade_frontalface_alt.xml");//2 特征匹配类
MatOfRect face = newMatOfRect();//3 特征匹配
faceDetector.detectMultiScale(image, face);
Rect[] rects=face.toArray();
System.out.println("匹配到 " + rects.length + " 个人脸");if (rects != null && rects.length >= 1) {//4 为每张识别到的人脸画一个圈
for (int i = 0; i < rects.length; i++) {
Imgproc.rectangle(image,new Point(rects[i].x, rects[i].y), new Point(rects[i].x + rects[i].width, rects[i].y + rects[i].height), new Scalar(0, 255, 0));
Imgproc.putText(image,"Human", new Point(rects[i].x, rects[i].y), Imgproc.FONT_HERSHEY_SCRIPT_SIMPLEX, 1.0, new Scalar(0, 255, 0), 1, Imgproc.LINE_AA, false);//Mat dst=image.clone();//Imgproc.resize(image, image, new Size(300,300));
}
i++;if (i == 3) {//获取匹配成功第10次的照片
Imgcodecs.imwrite("D:\\Documents\\Pictures\\" + "face.png", image);
}
}returnimage;
}/*** OpenCV-4.1.1 图片人脸识别
*
*@return: void
* @date: 2019年5月7日12:16:55*/
public static voidface() {//1 读取OpenCV自带的人脸识别特征XML文件//OpenCV 图像识别库一般位于 opencv\sources\data 下面//CascadeClassifier facebook=new CascadeClassifier("D:\\Sofeware\\opencv\\sources\\data\\haarcascades\\haarcascade_frontalface_alt.xml");//2 读取测试图片
String imgPath = "D:\\Documents\\Pictures\\he.png";
Mat image=Imgcodecs.imread(imgPath);if(image.empty()) {
System.out.println("image 内容不存在!");return;
}//3 特征匹配
MatOfRect face = newMatOfRect();
faceDetector.detectMultiScale(image, face);//4 匹配 Rect 矩阵 数组
Rect[] rects =face.toArray();
System.out.println("匹配到 " + rects.length + " 个人脸");//5 为每张识别到的人脸画一个圈
int i = 1;for(Rect rect : face.toArray()) {
Imgproc.rectangle(image,new Point(rect.x, rect.y), new Point(rect.x + rect.width, rect.y +rect.height),new Scalar(0, 255, 0), 3);
imageCut(imgPath,"D:\\Documents\\Pictures\\" + i + ".jpg", rect.x, rect.y, rect.width, rect.height);//进行图片裁剪
i++;
}//6 展示图片
HighGui.imshow("人脸识别", image);
HighGui.waitKey(0);
}/*** 裁剪人脸
*
*@paramimagePath
*@paramoutFile
*@paramposX
*@paramposY
*@paramwidth
*@paramheight*/
public static void imageCut(String imagePath, String outFile, int posX, int posY, int width, intheight) {//原始图像
Mat image =Imgcodecs.imread(imagePath);//截取的区域:参数,坐标X,坐标Y,截图宽度,截图长度
Rect rect = newRect(posX, posY, width, height);//两句效果一样
Mat sub = image.submat(rect); //Mat sub = new Mat(image,rect);
Mat mat = newMat();
Size size= newSize(width, height);
Imgproc.resize(sub, mat, size);//将人脸进行截图并保存
Imgcodecs.imwrite(outFile, mat);
System.out.println(String.format("图片裁切成功,裁切后图片文件为: %s", outFile));
}/*** 人脸比对
*
*@paramimg_1
*@paramimg_2
*@return
*/
public static doublecompare_image(String img_1, String img_2) {
Mat mat_1=conv_Mat(img_1);
Mat mat_2=conv_Mat(img_2);
Mat hist_1= newMat();
Mat hist_2= newMat();//颜色范围
MatOfFloat ranges = newMatOfFloat(0f, 256f);//直方图大小, 越大匹配越精确 (越慢)
MatOfInt histSize = new MatOfInt(1000);
Imgproc.calcHist(Arrays.asList(mat_1),new MatOfInt(0), newMat(), hist_1, histSize, ranges);
Imgproc.calcHist(Arrays.asList(mat_2),new MatOfInt(0), newMat(), hist_2, histSize, ranges);//CORREL 相关系数
double res =Imgproc.compareHist(hist_1, hist_2, Imgproc.CV_COMP_CORREL);returnres;
}/*** 灰度化人脸
*
*@paramimg
*@return
*/
public staticMat conv_Mat(String img) {
Mat image0=Imgcodecs.imread(img);
Mat image1= newMat();//灰度化
Imgproc.cvtColor(image0, image1, Imgproc.COLOR_BGR2GRAY);//探测人脸
MatOfRect faceDetections = newMatOfRect();
faceDetector.detectMultiScale(image1, faceDetections);//rect中人脸图片的范围
for(Rect rect : faceDetections.toArray()) {
Mat face= newMat(image1, rect);returnface;
}return null;
}/*** OpenCV-4.1.1 将摄像头拍摄的视频写入本地
*
*@return: void
* @date: 2019年8月19日 17:20:48*/
public static voidwriteVideo() {//1 如果要从摄像头获取视频 则要在 VideoCapture 的构造方法写 0
VideoCapture capture = new VideoCapture(0);
Mat video= newMat();int index = 0;
Size size= newSize(capture.get(Videoio.CAP_PROP_FRAME_WIDTH), capture.get(Videoio.CAP_PROP_FRAME_HEIGHT));
VideoWriter writer= new VideoWriter("M:/a.mp4", VideoWriter.fourcc('D', 'I', 'V', 'X'), 15.0, size, true);while(capture.isOpened()) {
capture.read(video);//2 将摄像头的视频写入 Mat video 中
writer.write(video);
HighGui.imshow("像头获取视频", video);//3 显示图像
index = HighGui.waitKey(100);//4 获取键盘输入
if (index == 27) {//5 如果是 Esc 则退出
capture.release();
writer.release();return;
}
}
}
}